o
    )i.                     @   s  d dl mZmZmZmZmZ d dlZd dlZd dlZd dlm	Z	m
Z
 d dlmZ ddlmZ ddlmZ ejjd	e
d
ee
 de
fddZ			d2dededededef
ddZG dd dZdee
 de
fddZde
dee defdd Zejjd!ee
 d"eeeef  dededeee ef f
d#d$Zejjd%eee
f d&ee dee
 fd'd(Zejjd)ee
 dee
 d*ee d+ed,eee  d-ee de
fd.d/ZG d0d1 d1e	jZ dS )3    )DictListOptionalTupleUnionN)nnTensorbox_area   )_log_api_usage_once   )	roi_alignlevelsunmerged_resultsreturnc              	   C   s   |d }|j |j}}tj| d|d|d|df||d}tt|D ]4}t| |kd dddd}|	|d|| d|| d|| d}|
d||| }q)|S )Nr   r   r      dtypedevice)r   r   torchzerossizerangelenwhereviewexpandZscatter)r   r   Zfirst_resultr   r   reslevelindex r"   f/var/www/html/eduruby.in/lip-sync/lip-sync-env/lib/python3.10/site-packages/torchvision/ops/poolers.py_onnx_merge_levels   s   &r$         ư>k_mink_maxcanonical_scalecanonical_levelepsc                 C   s   t | ||||S N)LevelMapper)r(   r)   r*   r+   r,   r"   r"   r#   initLevelMapper%   s   r/   c                   @   sL   e Zd ZdZ			ddedededed	ef
d
dZdee defddZ	dS )r.   zDetermine which FPN level each RoI in a set of RoIs should map to based
    on the heuristic in the FPN paper.

    Args:
        k_min (int)
        k_max (int)
        canonical_scale (int)
        canonical_level (int)
        eps (float)
    r%   r&   r'   r(   r)   r*   r+   r,   c                 C   s"   || _ || _|| _|| _|| _d S r-   )r(   r)   s0lvl0r,   )selfr(   r)   r*   r+   r,   r"   r"   r#   __init__;   s
   
zLevelMapper.__init__boxlistsr   c                 C   sv   t t dd |D }t | jt || j  t j| j|j	d }t j
|| j| jd}|t j| j t jS )z<
        Args:
            boxlists (list[BoxList])
        c                 S   s   g | ]}t |qS r"   r	   ).0Zboxlistr"   r"   r#   
<listcomp>O   s    z(LevelMapper.__call__.<locals>.<listcomp>r   )minmax)r   sqrtcatfloorr1   log2r0   tensorr,   r   clampr(   r)   toZint64)r2   r4   sZtarget_lvlsr"   r"   r#   __call__I   s   .zLevelMapper.__call__Nr%   r&   r'   )
__name__
__module____qualname____doc__intfloatr3   r   r   rB   r"   r"   r"   r#   r.   /   s"    
r.   boxesc                    sT   t j| dd}|j|j t j fddt| D dd}t j||gdd}|S )Nr   )dimc              	      s6   g | ]\}}t j|d d d df |t j dqS )Nr   )r   Zlayoutr   )r   Z	full_likeZstrided)r5   ibr   r   r"   r#   r6   [   s   6 z*_convert_to_roi_format.<locals>.<listcomp>r   )r   r;   r   r   	enumerate)rJ   Zconcat_boxesZidsroisr"   rN   r#   _convert_to_roi_formatW   s   rQ   featureoriginal_sizec                 C   sb   | j dd  }g }t||D ]\}}t|t| }dtt|   }|| q|d S )Nr   r   )shapeziprI   r   r>   r=   roundappend)rR   rS   r   Zpossible_scaless1s2Zapprox_scalescaler"   r"   r#   _infer_scaleb   s   r\   featuresimage_shapesc                    s   |st dd}d}|D ]}t|d |}t|d |}q||f  fdd| D }ttj|d tjd  }ttj|d tjd  }	tt|t|	||d}
||
fS )	Nzimages list should not be emptyr   r   c                    s   g | ]}t | qS r"   )r\   )r5   ZfeatZoriginal_input_shaper"   r#   r6   z   s    z!_setup_scales.<locals>.<listcomp>r7   r   r*   r+   )	
ValueErrorr9   r   r=   r>   Zfloat32itemr/   rH   )r]   r^   r*   r+   Zmax_xZmax_yrU   scalesZlvl_minZlvl_max
map_levelsr"   r_   r#   _setup_scalesm   s$     re   xfeatmap_namesc                 C   s,   g }|   D ]\}}||v r|| q|S r-   )itemsrX   )rf   rg   
x_filteredkvr"   r"   r#   _filter_input   s   
rl   ri   output_sizesampling_ratiorc   mapperc                 C   s"  |du s|du rt dt| }t|}|dkr%t| d |||d |dS ||}t|}	| d jd }
| d j| d j}}tj|	|
f| ||d}g }t	t
| |D ]1\}\}}t||kd }|| }t|||||d}t r}||| qT||j||< qTt rt||}|S )a  
    Args:
        x_filtered (List[Tensor]): List of input tensors.
        boxes (List[Tensor[N, 4]]): boxes to be used to perform the pooling operation, in
            (x1, y1, x2, y2) format and in the image reference size, not the feature map
            reference. The coordinate must satisfy ``0 <= x1 < x2`` and ``0 <= y1 < y2``.
        output_size (Union[List[Tuple[int, int]], List[int]]): size of the output
        sampling_ratio (int): sampling ratio for ROIAlign
        scales (Optional[List[float]]): If None, scales will be automatically inferred. Default value is None.
        mapper (Optional[LevelMapper]): If none, mapper will be automatically inferred. Default value is None.
    Returns:
        result (Tensor)
    Nz$scales and mapper should not be Noner   r   )rm   Zspatial_scalern   r   )ra   r   rQ   r   rU   r   r   r   r   rO   rV   r   torchvisionZ_is_tracingrX   r@   r$   )ri   rJ   rm   rn   rc   ro   Z
num_levelsrP   r   Znum_roisZnum_channelsr   r   resultZtracing_resultsr    Zper_level_featurer[   Zidx_in_levelZrois_per_levelZresult_idx_in_levelr"   r"   r#   _multiscale_roi_align   sT   
	
rr   c                       s   e Zd ZdZeee  ee dZddddee	 de
eee ee f ded	ed
ef
 fddZdee	ef dee deeeef  defddZde	fddZ  ZS )MultiScaleRoIAligna{  
    Multi-scale RoIAlign pooling, which is useful for detection with or without FPN.

    It infers the scale of the pooling via the heuristics specified in eq. 1
    of the `Feature Pyramid Network paper <https://arxiv.org/abs/1612.03144>`_.
    They keyword-only parameters ``canonical_scale`` and ``canonical_level``
    correspond respectively to ``224`` and ``k0=4`` in eq. 1, and
    have the following meaning: ``canonical_level`` is the target level of the pyramid from
    which to pool a region of interest with ``w x h = canonical_scale x canonical_scale``.

    Args:
        featmap_names (List[str]): the names of the feature maps that will be used
            for the pooling.
        output_size (List[Tuple[int, int]] or List[int]): output size for the pooled region
        sampling_ratio (int): sampling ratio for ROIAlign
        canonical_scale (int, optional): canonical_scale for LevelMapper
        canonical_level (int, optional): canonical_level for LevelMapper

    Examples::

        >>> m = torchvision.ops.MultiScaleRoIAlign(['feat1', 'feat3'], 3, 2)
        >>> i = OrderedDict()
        >>> i['feat1'] = torch.rand(1, 5, 64, 64)
        >>> i['feat2'] = torch.rand(1, 5, 32, 32)  # this feature won't be used in the pooling
        >>> i['feat3'] = torch.rand(1, 5, 16, 16)
        >>> # create some random bounding boxes
        >>> boxes = torch.rand(6, 4) * 256; boxes[:, 2:] += boxes[:, :2]
        >>> # original image size, before computing the feature maps
        >>> image_sizes = [(512, 512)]
        >>> output = m(i, [boxes], image_sizes)
        >>> print(output.shape)
        >>> torch.Size([6, 5, 3, 3])

    )rc   rd   r%   r&   r`   rg   rm   rn   r*   r+   c                   sV   t    t|  t|tr||f}|| _|| _t|| _d | _	d | _
|| _|| _d S r-   )superr3   r   
isinstancerH   rg   rn   tuplerm   rc   rd   r*   r+   )r2   rg   rm   rn   r*   r+   	__class__r"   r#   r3     s   
	


zMultiScaleRoIAlign.__init__rf   rJ   r^   r   c                 C   sT   t || j}| jdu s| jdu rt||| j| j\| _| _t||| j| j	| j| jS )a  
        Args:
            x (OrderedDict[Tensor]): feature maps for each level. They are assumed to have
                all the same number of channels, but they can have different sizes.
            boxes (List[Tensor[N, 4]]): boxes to be used to perform the pooling operation, in
                (x1, y1, x2, y2) format and in the image reference size, not the feature map
                reference. The coordinate must satisfy ``0 <= x1 < x2`` and ``0 <= y1 < y2``.
            image_shapes (List[Tuple[height, width]]): the sizes of each image before they
                have been fed to a CNN to obtain feature maps. This allows us to infer the
                scale factor for each one of the levels to be pooled.
        Returns:
            result (Tensor)
        N)
rl   rg   rc   rd   re   r*   r+   rr   rm   rn   )r2   rf   rJ   r^   ri   r"   r"   r#   forward!  s   zMultiScaleRoIAlign.forwardc                 C   s&   | j j d| j d| j d| j dS )Nz(featmap_names=z, output_size=z, sampling_ratio=))rx   rD   rg   rm   rn   )r2   r"   r"   r#   __repr__C  s   zMultiScaleRoIAlign.__repr__)rD   rE   rF   rG   r   r   rI   r.   __annotations__strr   rH   r   r3   r   r   ry   r{   __classcell__r"   r"   rw   r#   rs      s4    #

"rs   rC   )!typingr   r   r   r   r   r   Ztorch.fxrp   r   r   Ztorchvision.ops.boxesr
   utilsr   r   ZjitZunusedr$   rH   rI   r/   r.   rQ   r\   Zfxwrapre   r}   rl   rr   Modulers   r"   r"   r"   r#   <module>   st    

((
S