o
    )is:                     @   s  d dl mZ d dlmZmZmZ d dlZd dlmZ d dlm	Z
 ddlmZ dd	lmZmZmZ dd
lmZ ddlmZmZmZ ddlmZmZmZ ddlmZmZmZmZm Z  ddlm!Z! ddl"m#Z# g dZ$G dd de!Z%G dd dej&Z'G dd dej&Z(G dd dej&Z)G dd dej*Z+dede,dee- de%fd d!Z.ed"d#d$Z/G d%d& d&eZ0G d'd( d(eZ1G d)d* d*eZ2dede,dee- de%fd+d,Z3e ed-e0j4fd.e j5fd/dd0dde j5d1d2ee0 d3e-dee, d4ee- d5ee  d6ede%fd7d8Z6e ed-e1j4fd.ej5fd/dd0ddej5d1d2ee1 d3e-dee, d4ee- d5ee d6ede%fd9d:Z7e ed-e2j4fd.ej5fd/dd0ddej5d1d2ee2 d3e-dee, d4ee- d5ee d6ede%fd;d<Z8dS )=    )partial)AnyListOptionalN)nn)
functional   )SemanticSegmentation   )register_modelWeightsWeightsEnum)_VOC_CATEGORIES)_ovewrite_value_paramhandle_legacy_interfaceIntermediateLayerGetter)mobilenet_v3_largeMobileNet_V3_Large_WeightsMobileNetV3)ResNet	resnet101ResNet101_Weightsresnet50ResNet50_Weights   )_SimpleSegmentationModel)FCNHead)	DeepLabV3DeepLabV3_ResNet50_WeightsDeepLabV3_ResNet101_Weights$DeepLabV3_MobileNet_V3_Large_Weightsdeeplabv3_mobilenet_v3_largedeeplabv3_resnet50deeplabv3_resnet101c                   @   s   e Zd ZdZdS )r   a  
    Implements DeepLabV3 model from
    `"Rethinking Atrous Convolution for Semantic Image Segmentation"
    <https://arxiv.org/abs/1706.05587>`_.

    Args:
        backbone (nn.Module): the network used to compute the features for the model.
            The backbone should return an OrderedDict[Tensor], with the key being
            "out" for the last feature map used, and "aux" if an auxiliary classifier
            is used.
        classifier (nn.Module): module that takes the "out" element returned from
            the backbone and returns a dense prediction.
        aux_classifier (nn.Module, optional): auxiliary classifier used during training
    N)__name__
__module____qualname____doc__ r(   r(   x/var/www/html/eduruby.in/lip-sync/lip-sync-env/lib/python3.10/site-packages/torchvision/models/segmentation/deeplabv3.pyr      s    r   c                       s*   e Zd Zdededdf fddZ  ZS )DeepLabHeadin_channelsnum_classesreturnNc                    sF   t  t|g dtjddddddtdt td|d d S )N)      $      r   r   F)paddingbias)super__init__ASPPr   Conv2dBatchNorm2dReLU)selfr+   r,   	__class__r(   r)   r5   1   s   zDeepLabHead.__init__r$   r%   r&   intr5   __classcell__r(   r(   r;   r)   r*   0   s    "r*   c                       s.   e Zd Zdedededdf fddZ  ZS )ASPPConvr+   out_channelsdilationr-   Nc                    s6   t j||d||ddt |t  g}t j|  d S )Nr   F)r2   rB   r3   )r   r7   r8   r9   r4   r5   )r:   r+   rA   rB   modulesr;   r(   r)   r5   <   s
   zASPPConv.__init__r=   r(   r(   r;   r)   r@   ;   s    &r@   c                       s@   e Zd Zdededdf fddZdejdejfdd	Z  ZS )
ASPPPoolingr+   rA   r-   Nc              	      s4   t  tdtj||dddt|t  d S )Nr   Fr3   )r4   r5   r   ZAdaptiveAvgPool2dr7   r8   r9   )r:   r+   rA   r;   r(   r)   r5   F   s   zASPPPooling.__init__xc                 C   s2   |j dd  }| D ]}||}q	tj||dddS )NZbilinearF)sizemodeZalign_corners)shapeFZinterpolate)r:   rF   rH   modr(   r(   r)   forwardN   s   
zASPPPooling.forward)	r$   r%   r&   r>   r5   torchTensorrM   r?   r(   r(   r;   r)   rD   E   s    rD   c                	       sJ   e Zd Zddedee deddf fddZd	ejdejfd
dZ  Z	S )r6   r1   r+   atrous_ratesrA   r-   Nc              
      s   t    g }|ttj||dddt|t  t|}|D ]}|t	||| q#|t
|| t|| _ttjt| j| |dddt|t td| _d S )Nr   FrE   g      ?)r4   r5   appendr   
Sequentialr7   r8   r9   tupler@   rD   Z
ModuleListconvslenZDropoutproject)r:   r+   rP   rA   rC   ZratesZrater;   r(   r)   r5   V   s    
$
zASPP.__init__rF   c                 C   s6   g }| j D ]	}||| qtj|dd}| |S )Nr   )dim)rT   rQ   rN   catrV   )r:   rF   Z_resconvresr(   r(   r)   rM   l   s
   

zASPP.forward)r1   )
r$   r%   r&   r>   r   r5   rN   rO   rM   r?   r(   r(   r;   r)   r6   U   s    $r6   backboner,   auxr-   c                 C   sH   ddi}|r
d|d< t | |d} |rtd|nd }td|}t| ||S )NZlayer4outr\   Zlayer3return_layersi   i   )r   r   r*   r   )r[   r,   r\   r_   aux_classifier
classifierr(   r(   r)   _deeplabv3_resnett   s   
rb   )r   r   z
        These weights were trained on a subset of COCO, using only the 20 categories that are present in the Pascal VOC
        dataset.
    )
categoriesZmin_sizeZ_docsc                
   @   D   e Zd Zedeeddi edddddd	id
dddZeZdS )r   zHhttps://download.pytorch.org/models/deeplabv3_resnet50_coco-cd0a2569.pth  Zresize_sizeijzVhttps://github.com/pytorch/vision/tree/main/references/segmentation#deeplabv3_resnet50COCO-val2017-VOC-labelsgP@皙W@ZmiouZ	pixel_accgvWf@gGzd@Z
num_paramsZrecipeZ_metricsZ_ops
_file_sizeurlZ
transformsmetaN	r$   r%   r&   r   r   r	   _COMMON_METACOCO_WITH_VOC_LABELS_V1DEFAULTr(   r(   r(   r)   r      &    
r   c                
   @   rd   )r   zIhttps://download.pytorch.org/models/deeplabv3_resnet101_coco-586e9e4e.pthre   rf   ijzQhttps://github.com/pytorch/vision/tree/main/references/segmentation#fcn_resnet101rg   gP@rh   ri   gS+p@gm&m@rj   rl   Nro   r(   r(   r(   r)   r      rs   r   c                
   @   rd   )r    zMhttps://download.pytorch.org/models/deeplabv3_mobilenet_v3_large-fc3c493d.pthre   rf   iPK z`https://github.com/pytorch/vision/tree/main/references/segmentation#deeplabv3_mobilenet_v3_largerg   gfffff&N@gV@ri   gCl$@gJ+&E@rj   rl   Nro   r(   r(   r(   r)   r       rs   r    c                 C   s   | j } dgdd t| D  t| d g }|d }| | j}|d }| | j}t|di}|r6d|t|< t| |d	} |rCt||nd }	t||}
t| |
|	S )
Nr   c                 S   s    g | ]\}}t |d dr|qS )Z_is_cnF)getattr).0ibr(   r(   r)   
<listcomp>   s     z*_deeplabv3_mobilenetv3.<locals>.<listcomp>r   r]   r\   r^   )	features	enumeraterU   rA   strr   r   r*   r   )r[   r,   r\   Zstage_indicesZout_posZout_inplanesZaux_posZaux_inplanesr_   r`   ra   r(   r(   r)   _deeplabv3_mobilenetv3   s   &


r~   Z
pretrainedZpretrained_backbone)weightsweights_backboneT)r   progressr,   aux_lossr   r   r   r   r   kwargsc                 K      t | } t|}| dur"d}td|t| jd }td|d}n|du r(d}t|g dd}t|||}| durD|| j	|dd	 |S )
ad  Constructs a DeepLabV3 model with a ResNet-50 backbone.

    .. betastatus:: segmentation module

    Reference: `Rethinking Atrous Convolution for Semantic Image Segmentation <https://arxiv.org/abs/1706.05587>`__.

    Args:
        weights (:class:`~torchvision.models.segmentation.DeepLabV3_ResNet50_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.segmentation.DeepLabV3_ResNet50_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the
            download to stderr. Default is True.
        num_classes (int, optional): number of output classes of the model (including the background)
        aux_loss (bool, optional): If True, it uses an auxiliary loss
        weights_backbone (:class:`~torchvision.models.ResNet50_Weights`, optional): The pretrained weights for the
            backbone
        **kwargs: unused

    .. autoclass:: torchvision.models.segmentation.DeepLabV3_ResNet50_Weights
        :members:
    Nr,   rc   r   T   FTTr   Zreplace_stride_with_dilationr   Z
check_hash)
r   verifyr   r   rU   rn   r   rb   load_state_dictget_state_dictr   r   r,   r   r   r   r[   modelr(   r(   r)   r"         
%
r"   c                 K   r   )
ai  Constructs a DeepLabV3 model with a ResNet-101 backbone.

    .. betastatus:: segmentation module

    Reference: `Rethinking Atrous Convolution for Semantic Image Segmentation <https://arxiv.org/abs/1706.05587>`__.

    Args:
        weights (:class:`~torchvision.models.segmentation.DeepLabV3_ResNet101_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.segmentation.DeepLabV3_ResNet101_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the
            download to stderr. Default is True.
        num_classes (int, optional): number of output classes of the model (including the background)
        aux_loss (bool, optional): If True, it uses an auxiliary loss
        weights_backbone (:class:`~torchvision.models.ResNet101_Weights`, optional): The pretrained weights for the
            backbone
        **kwargs: unused

    .. autoclass:: torchvision.models.segmentation.DeepLabV3_ResNet101_Weights
        :members:
    Nr,   rc   r   Tr   r   r   r   )
r   r   r   r   rU   rn   r   rb   r   r   r   r(   r(   r)   r#     r   r#   c                 K   s   t | } t|}| dur"d}td|t| jd }td|d}n|du r(d}t|dd}t|||}| durB|| j	|dd |S )	ak  Constructs a DeepLabV3 model with a MobileNetV3-Large backbone.

    Reference: `Rethinking Atrous Convolution for Semantic Image Segmentation <https://arxiv.org/abs/1706.05587>`__.

    Args:
        weights (:class:`~torchvision.models.segmentation.DeepLabV3_MobileNet_V3_Large_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.segmentation.DeepLabV3_MobileNet_V3_Large_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the
            download to stderr. Default is True.
        num_classes (int, optional): number of output classes of the model (including the background)
        aux_loss (bool, optional): If True, it uses an auxiliary loss
        weights_backbone (:class:`~torchvision.models.MobileNet_V3_Large_Weights`, optional): The pretrained weights
            for the backbone
        **kwargs: unused

    .. autoclass:: torchvision.models.segmentation.DeepLabV3_MobileNet_V3_Large_Weights
        :members:
    Nr,   rc   r   Tr   )r   Zdilatedr   )
r    r   r   r   rU   rn   r   r~   r   r   r   r(   r(   r)   r!   S  s   
#
r!   )9	functoolsr   typingr   r   r   rN   r   Ztorch.nnr   rK   Ztransforms._presetsr	   Z_apir   r   r   _metar   _utilsr   r   r   Zmobilenetv3r   r   r   Zresnetr   r   r   r   r   r   Zfcnr   __all__r   rR   r*   r@   rD   Moduler6   r>   boolrb   rp   r   r   r    r~   rq   ZIMAGENET1K_V1r"   r#   r!   r(   r(   r(   r)   <module>   s    



33