o
    )i|                     @   s  d dl Z d dlmZ d dlmZ d dlmZmZmZm	Z	m
Z
mZ d dlZd dlZd dlm  mZ d dlmZmZ d dlmZmZmZ d dlmZ d dlmZmZ d d	lmZmZ d d
l m!Z! d dl"m#Z#m$Z$ d dl%m&Z& g dZ'dee(e(f de(de(de(dee(e(f f
ddZ)dee(e(f de(deee(e(f  fddZ*de(de(dejfddZ+G dd dej,Z-G dd dej,Z.G d d! d!ej,Z/G d"d# d#ej,Z0G d$d% d%ej,Z1G d&d' d'ej,Z2G d(d) d)ej,Z3G d*d+ d+ej,Z4G d,d- d-ej,Z5		.dBd/e(d0ee( d1ee( d2e6d3e(d4e(d5e	e d6e7d7ede5fd8d9Z8G d:d; d;eZ9e ed<e9j:fd=dd>d?d5e	e9 d6e7d7ede5fd@dAZ;dS )C    N)OrderedDict)partial)AnyCallableListOptionalSequenceTuple)nnTensor)register_modelWeightsWeightsEnum)_IMAGENET_CATEGORIES)_ovewrite_named_paramhandle_legacy_interface)Conv2dNormActivationSqueezeExcitation)StochasticDepth)ImageClassificationInterpolationMode)_log_api_usage_once)MaxVitMaxVit_T_Weightsmaxvit_t
input_sizekernel_sizestridepaddingreturnc                 C   s8   | d | d|  | d | d | d|  | d fS )Nr          )r   r   r   r   r"   r"   h/var/www/html/eduruby.in/lip-sync/lip-sync-env/lib/python3.10/site-packages/torchvision/models/maxvit.py_get_conv_output_shape   s   r$   n_blocksc                 C   s<   g }t | ddd}t|D ]}t |ddd}|| q|S )zQUtil function to check that the input size is correct for a MaxVit configuration.   r    r!   )r$   rangeappend)r   r%   ZshapesZblock_input_shape_r"   r"   r#   _make_block_input_shapes    s   r*   heightwidthc                 C   s   t t t | t |g}t |d}|d d d d d f |d d d d d f  }|ddd }|d d d d df  | d 7  < |d d d d df  |d 7  < |d d d d df  d| d 9  < |dS )Nr!   r    r   )torchstackZmeshgridZarangeflattenpermute
contiguoussum)r+   r,   ZcoordsZcoords_flatZrelative_coordsr"   r"   r#   _get_relative_position_index*   s    ,""&
r4   c                       sp   e Zd ZdZ	ddedededededed	ejf d
ed	ejf deddf fddZ	de
de
fddZ  ZS )MBConva=  MBConv: Mobile Inverted Residual Bottleneck.

    Args:
        in_channels (int): Number of input channels.
        out_channels (int): Number of output channels.
        expansion_ratio (float): Expansion ratio in the bottleneck.
        squeeze_ratio (float): Squeeze ratio in the SE Layer.
        stride (int): Stride of the depthwise convolution.
        activation_layer (Callable[..., nn.Module]): Activation function.
        norm_layer (Callable[..., nn.Module]): Normalization function.
        p_stochastic_dropout (float): Probability of stochastic depth.
            in_channelsout_channelsexpansion_ratiosqueeze_ratior   activation_layer.
norm_layerp_stochastic_dropoutr   Nc	                    s*  t    |  |dkp||k}	|	r2tj||ddddg}
|dkr+tjd|ddg|
 }
tj|
 | _nt | _t|| }t|| }|rMt	|dd| _
nt | _
t }|||d	< t||ddd
||d d|d< t||d|d|||d d	|d< t||tjd|d< tj||ddd|d< t|| _d S )Nr!   T)r   r   biasr    r&   r   r   r   rowmodeZpre_normr   )r   r   r   r;   r<   inplaceZconv_a)r   r   r   r;   r<   groupsrC   Zconv_b)Z
activationZsqueeze_excitation)r7   r8   r   r>   Zconv_c)super__init__r
   Conv2dZ	AvgPool2d
SequentialprojIdentityintr   stochastic_depthr   r   r   ZSiLUlayers)selfr7   r8   r9   r:   r   r;   r<   r=   Zshould_projrI   Zmid_channelsZsqz_channelsZ_layers	__class__r"   r#   rF   C   sP   





zMBConv.__init__xc                 C   s"   |  |}| | |}|| S )z
        Args:
            x (Tensor): Input tensor with expected layout of [B, C, H, W].
        Returns:
            Tensor: Output tensor with expected layout of [B, C, H / stride, W / stride].
        )rI   rL   rM   rN   rQ   resr"   r"   r#   forward   s   
zMBConv.forward)r6   )__name__
__module____qualname____doc__rK   floatr   r
   ModulerF   r   rT   __classcell__r"   r"   rO   r#   r5   5   s.    	
=r5   c                       sT   e Zd ZdZdedededdf fddZdejfd	d
ZdedefddZ	  Z
S )$RelativePositionalMultiHeadAttentionzRelative Positional Multi-Head Attention.

    Args:
        feat_dim (int): Number of input features.
        head_dim (int): Number of features per head.
        max_seq_len (int): Maximum sequence length.
    feat_dimhead_dimmax_seq_lenr   Nc                    s   t    || dkrtd| d| || | _|| _tt|| _|| _	t
|| j| j d | _|d | _t
| j| j || _t
jtjd| j d d| j d  | jftjd| _| d	t| j| j tj
jj| jd
d d S )Nr   z
feat_dim: z  must be divisible by head_dim: r&   g      r    r!   )Zdtyperelative_position_index{Gz?Zstd)rE   rF   
ValueErrorn_headsr^   rK   mathsqrtsizer_   r
   Linearto_qkvscale_factormergeZ	parameter	Parameterr.   emptyZfloat32relative_position_bias_tableZregister_bufferr4   initZtrunc_normal_)rN   r]   r^   r_   rO   r"   r#   rF      s   


,z-RelativePositionalMultiHeadAttention.__init__c                 C   s@   | j d}| j| | j| jd}|ddd }|dS )Nr-   r    r   r!   )r`   viewrn   r_   r1   r2   Z	unsqueeze)rN   Z
bias_indexZrelative_biasr"   r"   r#   get_relative_positional_bias   s   
zARelativePositionalMultiHeadAttention.get_relative_positional_biasrQ   c                 C   s  |j \}}}}| j| j}}| |}tj|ddd\}	}
}|	|||||ddddd}	|
|||||ddddd}
||||||ddddd}|
| j }
t	d|	|
}| 
 }tj|| dd}t	d	||}|ddddd||||}| |}|S )
z
        Args:
            x (Tensor): Input tensor with expected layout of [B, G, P, D].
        Returns:
            Tensor: Output tensor with expected layout of [B, G, P, D].
        r&   r-   )dimr   r!   r       z!B G H I D, B G H J D -> B G H I Jz!B G H I J, B G H J D -> B G H I D)shaperd   r^   ri   r.   chunkreshaper1   rj   Zeinsumrq   FZsoftmaxrk   )rN   rQ   BGPDHZDHZqkvqkvZdot_prodZpos_biasoutr"   r"   r#   rT      s   
   

z,RelativePositionalMultiHeadAttention.forward)rU   rV   rW   rX   rK   rF   r.   r   rq   rT   r[   r"   r"   rO   r#   r\      s    r\   c                       sD   e Zd ZdZdededdf fddZdejdejfd	d
Z  Z	S )SwapAxeszPermute the axes of a tensor.abr   Nc                    s   t    || _|| _d S N)rE   rF   r   r   )rN   r   r   rO   r"   r#   rF      s   

zSwapAxes.__init__rQ   c                 C   s   t || j| j}|S r   )r.   Zswapaxesr   r   rR   r"   r"   r#   rT      s   zSwapAxes.forward)
rU   rV   rW   rX   rK   rF   r.   r   rT   r[   r"   r"   rO   r#   r      s    r   c                       s8   e Zd ZdZd
 fddZdededefdd	Z  ZS )WindowPartitionzB
    Partition the input tensor into non-overlapping windows.
    r   Nc                       t    d S r   rE   rF   rN   rO   r"   r#   rF         zWindowPartition.__init__rQ   pc                 C   sf   |j \}}}}|}||||| ||| |}|dddddd}|||| ||  || |}|S )z
        Args:
            x (Tensor): Input tensor with expected layout of [B, C, H, W].
            p (int): Number of partitions.
        Returns:
            Tensor: Output tensor with expected layout of [B, H/P, W/P, P*P, C].
        r   r    rs   r&      r!   rt   rv   r1   )rN   rQ   r   rx   Cr|   Wrz   r"   r"   r#   rT      s    zWindowPartition.forwardr   N	rU   rV   rW   rX   rF   r   rK   rT   r[   r"   r"   rO   r#   r      s    r   c                
       s@   e Zd ZdZd fddZdededed	edef
d
dZ  ZS )WindowDepartitionzo
    Departition the input tensor of non-overlapping windows into a feature volume of layout [B, C, H, W].
    r   Nc                    r   r   r   r   rO   r"   r#   rF     r   zWindowDepartition.__init__rQ   r   h_partitionsw_partitionsc                 C   s`   |j \}}}}|}	||}
}|||
||	|	|}|dddddd}||||
|	 ||	 }|S )ar  
        Args:
            x (Tensor): Input tensor with expected layout of [B, (H/P * W/P), P*P, C].
            p (int): Number of partitions.
            h_partitions (int): Number of vertical partitions.
            w_partitions (int): Number of horizontal partitions.
        Returns:
            Tensor: Output tensor with expected layout of [B, C, H, W].
        r   r   r!   r&   r    rs   r   )rN   rQ   r   r   r   rx   ry   ZPPr   rz   ZHPZWPr"   r"   r#   rT     s   

zWindowDepartition.forwardr   r   r"   r"   rO   r#   r      s    &r   c                       s   e Zd ZdZdededededeeef deded	ej	f d
ed	ej	f de
de
de
ddf fddZdedefddZ  ZS )PartitionAttentionLayera  
    Layer for partitioning the input tensor into non-overlapping windows and applying attention to each window.

    Args:
        in_channels (int): Number of input channels.
        head_dim (int): Dimension of each attention head.
        partition_size (int): Size of the partitions.
        partition_type (str): Type of partitioning to use. Can be either "grid" or "window".
        grid_size (Tuple[int, int]): Size of the grid to partition the input tensor into.
        mlp_ratio (int): Ratio of the  feature size expansion in the MLP layer.
        activation_layer (Callable[..., nn.Module]): Activation function to use.
        norm_layer (Callable[..., nn.Module]): Normalization function to use.
        attention_dropout (float): Dropout probability for the attention layer.
        mlp_dropout (float): Dropout probability for the MLP layer.
        p_stochastic_dropout (float): Probability of dropping out a partition.
    r7   r^   partition_sizepartition_type	grid_size	mlp_ratior;   .r<   attention_dropoutmlp_dropoutr=   r   Nc              	      s(  t    || | _|| _|d | | _|| _|| _|dvr"td|dkr/|| j| _| _	n| j|| _| _	t
 | _t | _|dkrHtddnt | _|dkrVtddnt | _t||t|||d t|	| _tt|t||| | t|| |t|
| _t|d	d
| _d S )Nr   )gridwindowz0partition_type must be either 'grid' or 'window'r   r   r    r@   rA   )rE   rF   rd   r^   Zn_partitionsr   r   rc   r   gr   partition_opr   departition_opr   r
   rJ   partition_swapdepartition_swaprH   r\   ZDropout
attn_layer	LayerNormrh   	mlp_layerr   stochastic_dropout)rN   r7   r^   r   r   r   r   r;   r<   r   r   r=   rO   r"   r#   rF   ,  s8   

		z PartitionAttentionLayer.__init__rQ   c                 C   s   | j d | j | j d | j }}t| j d | j dko&| j d | j dkd| j | j | || j}| |}|| | | }|| | 	| }| 
|}| || j||}|S )z
        Args:
            x (Tensor): Input tensor with expected layout of [B, C, H, W].
        Returns:
            Tensor: Output tensor with expected layout of [B, C, H, W].
        r   r!   z[Grid size must be divisible by partition size. Got grid size of {} and partition size of {})r   r   r.   Z_assertformatr   r   r   r   r   r   r   )rN   rQ   ghZgwr"   r"   r#   rT   f  s   "
&

zPartitionAttentionLayer.forward)rU   rV   rW   rX   rK   strr	   r   r
   rZ   rY   rF   r   rT   r[   r"   r"   rO   r#   r     s8    
	
:r   c                       s   e Zd ZdZdededededededejf d	edejf d
edededededede	eef ddf fddZ
dedefddZ  ZS )MaxVitLayera  
    MaxVit layer consisting of a MBConv layer followed by a PartitionAttentionLayer with `window` and a PartitionAttentionLayer with `grid`.

    Args:
        in_channels (int): Number of input channels.
        out_channels (int): Number of output channels.
        expansion_ratio (float): Expansion ratio in the bottleneck.
        squeeze_ratio (float): Squeeze ratio in the SE Layer.
        stride (int): Stride of the depthwise convolution.
        activation_layer (Callable[..., nn.Module]): Activation function.
        norm_layer (Callable[..., nn.Module]): Normalization function.
        head_dim (int): Dimension of the attention heads.
        mlp_ratio (int): Ratio of the MLP layer.
        mlp_dropout (float): Dropout probability for the MLP layer.
        attention_dropout (float): Dropout probability for the attention layer.
        p_stochastic_dropout (float): Probability of stochastic depth.
        partition_size (int): Size of the partitions.
        grid_size (Tuple[int, int]): Size of the input feature grid.
    r7   r8   r:   r9   r   r<   .r;   r^   r   r   r   r=   r   r   r   Nc                    s   t    t }t||||||||d|d< t|||d||	|tj||
|d|d< t|||d||	|tj||
|d|d< t|| _d S )N)r7   r8   r9   r:   r   r;   r<   r=   ZMBconvr   )r7   r^   r   r   r   r   r;   r<   r   r   r=   Zwindow_attentionr   Zgrid_attention)	rE   rF   r   r5   r   r
   r   rH   rM   )rN   r7   r8   r:   r9   r   r<   r;   r^   r   r   r   r=   r   r   rM   rO   r"   r#   rF     sN   



zMaxVitLayer.__init__rQ   c                 C   s   |  |}|S z
        Args:
            x (Tensor): Input tensor of shape (B, C, H, W).
        Returns:
            Tensor: Output tensor of shape (B, C, H, W).
        rM   )rN   rQ   r"   r"   r#   rT     s   
zMaxVitLayer.forward)rU   rV   rW   rX   rK   rY   r   r
   rZ   r	   rF   r   rT   r[   r"   r"   rO   r#   r     sD    	

Ar   c                       s   e Zd ZdZdedededededejf dedejf d	ed
edededede	eef dede
e ddf fddZdedefddZ  ZS )MaxVitBlocka(  
    A MaxVit block consisting of `n_layers` MaxVit layers.

     Args:
        in_channels (int): Number of input channels.
        out_channels (int): Number of output channels.
        expansion_ratio (float): Expansion ratio in the bottleneck.
        squeeze_ratio (float): Squeeze ratio in the SE Layer.
        activation_layer (Callable[..., nn.Module]): Activation function.
        norm_layer (Callable[..., nn.Module]): Normalization function.
        head_dim (int): Dimension of the attention heads.
        mlp_ratio (int): Ratio of the MLP layer.
        mlp_dropout (float): Dropout probability for the MLP layer.
        attention_dropout (float): Dropout probability for the attention layer.
        p_stochastic_dropout (float): Probability of stochastic depth.
        partition_size (int): Size of the partitions.
        input_grid_size (Tuple[int, int]): Size of the input feature grid.
        n_layers (int): Number of layers in the block.
        p_stochastic (List[float]): List of probabilities for stochastic depth for each layer.
    r7   r8   r:   r9   r<   .r;   r^   r   r   r   r   input_grid_sizen_layersp_stochasticr   Nc                    s   t    t||kstd| d| dt | _t|dddd| _t	|D ]+\}}|dkr2dnd}|  jt
|dkr>|n||||||||||	|
|| j|d	g7  _q(d S )
Nz'p_stochastic must have length n_layers=z, got p_stochastic=.r&   r    r!   r?   r   )r7   r8   r:   r9   r   r<   r;   r^   r   r   r   r   r   r=   )rE   rF   lenrc   r
   
ModuleListrM   r$   r   	enumerater   )rN   r7   r8   r:   r9   r<   r;   r^   r   r   r   r   r   r   r   idxr   r   rO   r"   r#   rF     s4   


zMaxVitBlock.__init__rQ   c                 C   s   | j D ]}||}q|S r   r   )rN   rQ   layerr"   r"   r#   rT   ,  s   

zMaxVitBlock.forward)rU   rV   rW   rX   rK   rY   r   r
   rZ   r	   r   rF   r   rT   r[   r"   r"   rO   r#   r     sD    	
3r   c                !       s   e Zd ZdZdejddddddfdeeef ded	ed
ee dee dede	de
edejf  dedejf de	de	dede	de	deddf  fddZdedefddZdd Z  ZS )r   ay  
    Implements MaxVit Transformer from the `MaxViT: Multi-Axis Vision Transformer <https://arxiv.org/abs/2204.01697>`_ paper.
    Args:
        input_size (Tuple[int, int]): Size of the input image.
        stem_channels (int): Number of channels in the stem.
        partition_size (int): Size of the partitions.
        block_channels (List[int]): Number of channels in each block.
        block_layers (List[int]): Number of layers in each block.
        stochastic_depth_prob (float): Probability of stochastic depth. Expands to a list of probabilities for each layer that scales linearly to the specified value.
        squeeze_ratio (float): Squeeze ratio in the SE Layer. Default: 0.25.
        expansion_ratio (float): Expansion ratio in the MBConv bottleneck. Default: 4.
        norm_layer (Callable[..., nn.Module]): Normalization function. Default: None (setting to None will produce a `BatchNorm2d(eps=1e-3, momentum=0.99)`).
        activation_layer (Callable[..., nn.Module]): Activation function Default: nn.GELU.
        head_dim (int): Dimension of the attention heads.
        mlp_ratio (int): Expansion ratio of the MLP layer. Default: 4.
        mlp_dropout (float): Dropout probability for the MLP layer. Default: 0.0.
        attention_dropout (float): Dropout probability for the attention layer. Default: 0.0.
        num_classes (int): Number of classes. Default: 1000.
    Ng      ?rs   r6   i  r   stem_channelsr   block_channelsblock_layersr^   stochastic_depth_probr<   .r;   r:   r9   r   r   r   num_classesr   c                    s  t    t|  d}|d u rttjddd}t|t|}t|D ]%\}}|d | dks6|d | dkrGt	d| d| d	| d
| d	q"t
t||dd||	dd dt||ddd d dd| _t|dddd}|| _t | _|g|d d  }|}td|t| }d}t|||D ]+\}}}| jt|||
|||	|||||||||||  d | jd j}||7 }qt
tdt t|d t|d |d t tj|d |dd| _|   d S )Nr&   gMbP?gGz?)ZepsZmomentumr   r!   zInput size z
 of block z$ is not divisible by partition size zx. Consider changing the partition size or the input size.
Current configuration yields the following block input sizes: r   r    F)r   r<   r;   r>   rC   T)r   r<   r;   r>   r?   r-   )r7   r8   r:   r9   r<   r;   r^   r   r   r   r   r   r   r   )r>   ) rE   rF   r   r   r
   BatchNorm2dr*   r   r   rc   rH   r   stemr$   r   r   blocksnpZlinspacer3   tolistzipr(   r   r   ZAdaptiveAvgPool2dZFlattenr   rh   ZTanh
classifier_init_weights)rN   r   r   r   r   r   r^   r   r<   r;   r:   r9   r   r   r   r   Zinput_channelsZblock_input_sizesr   Zblock_input_sizer7   r8   r   p_idxZ
in_channelZout_channelZ
num_layersrO   r"   r#   rF   M  s   
 


	zMaxVit.__init__rQ   c                 C   s,   |  |}| jD ]}||}q| |}|S r   )r   r   r   )rN   rQ   blockr"   r"   r#   rT     s
   



zMaxVit.forwardc                 C   s   |   D ]P}t|tjr"tjj|jdd |jd ur!tj|j qt|tj	r9tj
|jd tj
|jd qt|tjrTtjj|jdd |jd urTtj|j qd S )Nra   rb   r!   r   )modules
isinstancer
   rG   ro   Znormal_weightr>   Zzeros_r   Z	constant_rh   )rN   mr"   r"   r#   r     s   

zMaxVit._init_weights)rU   rV   rW   rX   r
   ZGELUr	   rK   r   rY   r   r   rZ   rF   r   rT   r   r[   r"   r"   rO   r#   r   8  sZ    %
	
vr   Fr   r   r   r   r   r^   weightsprogresskwargsc              
   K   s   |d ur(t |dt|jd  |jd d |jd d ksJ t |d|jd  |dd}	td| ||||||	d|}
|d urK|
|j|d	d
 |
S )Nr   
categoriesmin_sizer   r!   r      r   )r   r   r   r   r^   r   r   T)r   Z
check_hashr"   )r   r   metapopr   Zload_state_dictZget_state_dict)r   r   r   r   r   r^   r   r   r   r   modelr"   r"   r#   _maxvit  s&    r   c                   @   sH   e Zd Zedeeddejdedddddd	d
idddddZ	e	Z
dS )r   z9https://download.pytorch.org/models/maxvit_t-bc5ab103.pthr   )Z	crop_sizeZresize_sizeinterpolationir   zLhttps://github.com/pytorch/vision/tree/main/references/classification#maxvitzImageNet-1KgT@g|?5.X@)zacc@1zacc@5gZd;@gK7]@zYThese weights reproduce closely the results of the paper using a similar training recipe.)r   Z
num_paramsr   ZrecipeZ_metricsZ_ops
_file_sizeZ_docs)urlZ
transformsr   N)rU   rV   rW   r   r   r   r   ZBICUBICr   IMAGENET1K_V1DEFAULTr"   r"   r"   r#   r     s*    
r   Z
pretrained)r   T)r   r   c                 K   s2   t | } td	dg dg dddd| |d|S )
a  
    Constructs a maxvit_t architecture from
    `MaxViT: Multi-Axis Vision Transformer <https://arxiv.org/abs/2204.01697>`_.

    Args:
        weights (:class:`~torchvision.models.MaxVit_T_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.MaxVit_T_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the
            download to stderr. Default is True.
        **kwargs: parameters passed to the ``torchvision.models.maxvit.MaxVit``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/maxvit.py>`_
            for more details about this class.

    .. autoclass:: torchvision.models.MaxVit_T_Weights
        :members:
    @   )r         i   )r    r    r   r        g?   )r   r   r   r^   r   r   r   r   Nr"   )r   verifyr   )r   r   r   r"   r"   r#   r     s   
	r   )NF)<re   collectionsr   	functoolsr   typingr   r   r   r   r   r	   numpyr   r.   Ztorch.nn.functionalr
   Z
functionalrw   r   Ztorchvision.models._apir   r   r   Ztorchvision.models._metar   Ztorchvision.models._utilsr   r   Ztorchvision.ops.miscr   r   Z torchvision.ops.stochastic_depthr   Ztorchvision.transforms._presetsr   r   Ztorchvision.utilsr   __all__rK   r$   r*   r4   rZ   r5   r\   r   r   r   r   r   r   r   rY   boolr   r   r   r   r"   r"   r"   r#   <module>   sp     .*
WIhaU .

*.