o
    )iA                     @   s  d dl Z d dlmZ d dlmZ d dlmZmZmZm	Z	 d dl
Z
d dlmZ d dlm  mZ d dlm  mZ d dl
mZ ddlmZ ddlmZ d	d
lmZmZmZ d	dlmZ d	dlmZm Z  g dZ!G dd dej"Z#G dd dej$Z%G dd dej&Z'G dd dej"Z(dej"dede)ddfddZ*de+de	e+e+e+e+f de+dee de)dede(fd d!Z,d"ed#d$d%Z-G d&d' d'eZ.G d(d) d)eZ/G d*d+ d+eZ0G d,d- d-eZ1e e d.e.j2fd/dd0d1dee. de)dede(fd2d3Z3e e d.e/j2fd/dd0d1dee/ de)dede(fd4d5Z4e e d.e0j2fd/dd0d1dee0 de)dede(fd6d7Z5e e d.e1j2fd/dd0d1dee1 de)dede(fd8d9Z6dS ):    N)OrderedDict)partial)AnyListOptionalTuple)Tensor   )ImageClassification)_log_api_usage_once   )register_modelWeightsWeightsEnum)_IMAGENET_CATEGORIES)_ovewrite_named_paramhandle_legacy_interface)	DenseNetDenseNet121_WeightsDenseNet161_WeightsDenseNet169_WeightsDenseNet201_Weightsdensenet121densenet161densenet169densenet201c                       s   e Zd Z	ddedededededdf fd	d
Zdee defddZ	dee defddZ
ejjdee defddZejjdee defddZejjdedefddZdedefddZ  ZS )_DenseLayerFnum_input_featuresgrowth_ratebn_size	drop_ratememory_efficientreturnNc                    s   t    t|| _tjdd| _tj||| dddd| _t|| | _	tjdd| _
tj|| |ddddd| _t|| _|| _d S )NTZinplacer   Fkernel_sizestridebias   r%   r&   paddingr'   )super__init__nnBatchNorm2dnorm1ReLUrelu1Conv2dconv1norm2relu2conv2floatr    r!   )selfr   r   r   r    r!   	__class__ j/var/www/html/eduruby.in/lip-sync/lip-sync-env/lib/python3.10/site-packages/torchvision/models/densenet.pyr,       s   


z_DenseLayer.__init__inputsc                 C   s&   t |d}| | | |}|S Nr   )torchcatr3   r1   r/   )r8   r=   Zconcated_featuresbottleneck_outputr;   r;   r<   bn_function/   s   z_DenseLayer.bn_functioninputc                 C   s   |D ]}|j r
 dS qdS )NTF)Zrequires_grad)r8   rC   Ztensorr;   r;   r<   any_requires_grad5   s
   z_DenseLayer.any_requires_gradc                    s    fdd}t j|g|R  S )Nc                     s
     | S N)rB   )r=   r8   r;   r<   closure=   s   
z7_DenseLayer.call_checkpoint_bottleneck.<locals>.closure)cp
checkpoint)r8   rC   rG   r;   rF   r<   call_checkpoint_bottleneck;   s   z&_DenseLayer.call_checkpoint_bottleneckc                 C      d S rE   r;   r8   rC   r;   r;   r<   forwardB      z_DenseLayer.forwardc                 C   rK   rE   r;   rL   r;   r;   r<   rM   F   rN   c                 C   s   t |tr	|g}n|}| jr"| |r"tj rtd| |}n| 	|}| 
| | |}| jdkrAtj|| j| jd}|S )Nz%Memory Efficient not supported in JITr   )ptraining)
isinstancer   r!   rD   r?   jitZis_scripting	ExceptionrJ   rB   r6   r5   r4   r    FZdropoutrP   )r8   rC   Zprev_featuresrA   new_featuresr;   r;   r<   rM   L   s   



F)__name__
__module____qualname__intr7   boolr,   r   r   rB   rD   r?   rR   ZunusedrJ   Z_overload_methodrM   __classcell__r;   r;   r9   r<   r      s0    r   c                       sT   e Zd ZdZ	ddedededededed	d
f fddZded	efddZ	  Z
S )_DenseBlockr	   F
num_layersr   r   r   r    r!   r"   Nc           	         sJ   t    t|D ]}t|||  ||||d}| d|d  | q	d S )N)r   r   r    r!   zdenselayer%dr   )r+   r,   ranger   
add_module)	r8   r^   r   r   r   r    r!   ilayerr9   r;   r<   r,   c   s   
	
z_DenseBlock.__init__init_featuresc                 C   s6   |g}|   D ]\}}||}|| qt|dS r>   )itemsappendr?   r@   )r8   rc   featuresnamerb   rU   r;   r;   r<   rM   w   s
   z_DenseBlock.forwardrV   )rW   rX   rY   _versionrZ   r7   r[   r,   r   rM   r\   r;   r;   r9   r<   r]   `   s&    	r]   c                       s*   e Zd Zdededdf fddZ  ZS )_Transitionr   num_output_featuresr"   Nc                    sN   t    t|| _tjdd| _tj||dddd| _tj	ddd| _
d S )NTr#   r   Fr$   r	   )r%   r&   )r+   r,   r-   r.   Znormr0   relur2   convZ	AvgPool2dpool)r8   r   rj   r9   r;   r<   r,      s
   
z_Transition.__init__)rW   rX   rY   rZ   r,   r\   r;   r;   r9   r<   ri      s    "ri   c                       sp   e Zd ZdZ							dd	ed
eeeeef dedededededdf fddZde	de	fddZ
  ZS )r   aK  Densenet-BC model class, based on
    `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_.

    Args:
        growth_rate (int) - how many filters to add each layer (`k` in paper)
        block_config (list of 4 ints) - how many layers in each pooling block
        num_init_features (int) - the number of filters to learn in the first convolution layer
        bn_size (int) - multiplicative factor for number of bottle neck layers
          (i.e. bn_size * k features in the bottleneck layer)
        drop_rate (float) - dropout rate after each dense layer
        num_classes (int) - number of classification classes
        memory_efficient (bool) - If True, uses checkpointing. Much more memory efficient,
          but slower. Default: *False*. See `"paper" <https://arxiv.org/pdf/1707.06990.pdf>`_.
                    @      r     Fr   block_confignum_init_featuresr   r    num_classesr!   r"   Nc                    s  t    t|  ttdtjd|dddddfdt|fdtjd	d
fdtj	ddddfg| _
|}t|D ]>\}	}
t|
|||||d}| j
d|	d  | ||
|  }|	t|d krwt||d d}| j
d|	d  | |d }q9| j
dt| t||| _|  D ]5}t|tjrtj|j qt|tjrtj|jd tj|jd qt|tjrtj|jd qd S )NZconv0r(      r	   Fr)   Znorm0Zrelu0Tr#   Zpool0r   )r%   r&   r*   )r^   r   r   r   r    r!   zdenseblock%d)r   rj   ztransition%dZnorm5r   )r+   r,   r   r-   
Sequentialr   r2   r.   r0   Z	MaxPool2drf   	enumerater]   r`   lenri   ZLinear
classifiermodulesrQ   initZkaiming_normal_weightZ	constant_r'   )r8   r   rw   rx   r   r    ry   r!   Znum_featuresra   r^   blockZtransmr9   r;   r<   r,      sP   
zDenseNet.__init__xc                 C   s>   |  |}tj|dd}t|d}t|d}| |}|S )NTr#   )r   r   r   )rf   rT   rk   Zadaptive_avg_pool2dr?   flattenr~   )r8   r   rf   outr;   r;   r<   rM      s   

zDenseNet.forward)rn   ro   rt   ru   r   rv   F)rW   rX   rY   __doc__rZ   r   r7   r[   r,   r   rM   r\   r;   r;   r9   r<   r      s6    	<r   modelweightsprogressr"   c                 C   sl   t d}|j|dd}t| D ]}||}|r.|d|d }|| ||< ||= q| | d S )Nz]^(.*denselayer\d+\.(?:norm|relu|conv))\.((?:[12])\.(?:weight|bias|running_mean|running_var))$T)r   Z
check_hashr   r	   )recompileZget_state_dictlistkeysmatchgroupZload_state_dict)r   r   r   patternZ
state_dictkeyresZnew_keyr;   r;   r<   _load_state_dict   s   
r   r   rw   rx   kwargsc                 K   sL   |d urt |dt|jd  t| ||fi |}|d ur$t|||d |S )Nry   
categories)r   r   r   )r   r}   metar   r   )r   rw   rx   r   r   r   r   r;   r;   r<   	_densenet   s   r   )   r   z*https://github.com/pytorch/vision/pull/116z'These weights are ported from LuaTorch.)Zmin_sizer   ZrecipeZ_docsc                	   @   B   e Zd Zedeeddi edddddid	d
ddZeZdS )r   z<https://download.pytorch.org/models/densenet121-a639ec97.pth   Z	crop_sizeihy ImageNet-1KgƛR@g|?5V@zacc@1zacc@5gy&1@gQ>@Z
num_paramsZ_metricsZ_ops
_file_sizeurlZ
transformsr   N	rW   rX   rY   r   r   r
   _COMMON_METAIMAGENET1K_V1DEFAULTr;   r;   r;   r<   r     $    
r   c                	   @   r   )r   z<https://download.pytorch.org/models/densenet161-8d451a50.pthr   r   i(r   gFHS@gp=
cW@r   gx@gV-[@r   r   Nr   r;   r;   r;   r<   r     r   r   c                	   @   r   )r   z<https://download.pytorch.org/models/densenet169-b2777c0a.pthr   r   ih r   gfffffR@g$3W@r   gzG
@gvZK@r   r   Nr   r;   r;   r;   r<   r   3  r   r   c                	   @   r   )r   z<https://download.pytorch.org/models/densenet201-c1103571.pthr   r   ihc1r   gMbX9S@gHzWW@r   gDl)@gZd;WS@r   r   Nr   r;   r;   r;   r<   r   G  r   r   Z
pretrained)r   T)r   r   c                 K   "   t | } tddd| |fi |S )a{  Densenet-121 model from
    `Densely Connected Convolutional Networks <https://arxiv.org/abs/1608.06993>`_.

    Args:
        weights (:class:`~torchvision.models.DenseNet121_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.DenseNet121_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True.
        **kwargs: parameters passed to the ``torchvision.models.densenet.DenseNet``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/densenet.py>`_
            for more details about this class.

    .. autoclass:: torchvision.models.DenseNet121_Weights
        :members:
    rn   ro   rt   )r   verifyr   r   r   r   r;   r;   r<   r   [     
r   c                 K   r   )a{  Densenet-161 model from
    `Densely Connected Convolutional Networks <https://arxiv.org/abs/1608.06993>`_.

    Args:
        weights (:class:`~torchvision.models.DenseNet161_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.DenseNet161_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True.
        **kwargs: parameters passed to the ``torchvision.models.densenet.DenseNet``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/densenet.py>`_
            for more details about this class.

    .. autoclass:: torchvision.models.DenseNet161_Weights
        :members:
    0   )rp   rq   $   rr   `   )r   r   r   r   r;   r;   r<   r   u  r   r   c                 K   r   )a{  Densenet-169 model from
    `Densely Connected Convolutional Networks <https://arxiv.org/abs/1608.06993>`_.

    Args:
        weights (:class:`~torchvision.models.DenseNet169_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.DenseNet169_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True.
        **kwargs: parameters passed to the ``torchvision.models.densenet.DenseNet``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/densenet.py>`_
            for more details about this class.

    .. autoclass:: torchvision.models.DenseNet169_Weights
        :members:
    rn   )rp   rq   rn   rn   rt   )r   r   r   r   r;   r;   r<   r     r   r   c                 K   r   )a{  Densenet-201 model from
    `Densely Connected Convolutional Networks <https://arxiv.org/abs/1608.06993>`_.

    Args:
        weights (:class:`~torchvision.models.DenseNet201_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.DenseNet201_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True.
        **kwargs: parameters passed to the ``torchvision.models.densenet.DenseNet``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/densenet.py>`_
            for more details about this class.

    .. autoclass:: torchvision.models.DenseNet201_Weights
        :members:
    rn   )rp   rq   r   rn   rt   )r   r   r   r   r;   r;   r<   r     r   r   )7r   collectionsr   	functoolsr   typingr   r   r   r   r?   Ztorch.nnr-   Ztorch.nn.functionalZ
functionalrT   Ztorch.utils.checkpointutilsrI   rH   r   Ztransforms._presetsr
   r   Z_apir   r   r   _metar   _utilsr   r   __all__Moduler   Z
ModuleDictr]   r{   ri   r   r[   r   rZ   r   r   r   r   r   r   r   r   r   r   r   r;   r;   r;   r<   <module>   sp    A	U
***.