o
    )i](                     @   s   d dl Z d dlZd dlZd dlZd dlmZ d dlmZ d dlmZ d dl	m
Z
mZmZmZmZ d dlmZ ddlmZmZ dd	lmZmZmZmZ dd
lmZ ddlmZ dedededdfddZG dd deZdS )    N)partial)Pool)path)AnyCallableDictOptionalTuple)Tensor   )find_classesmake_dataset)check_integritydownload_and_extract_archivedownload_urlverify_str_arg)
VideoClips)VisionDatasettarpath	videopathlinereturnc                 C   s   t || | d S N)r   )r   r   r    r   l/var/www/html/eduruby.in/lip-sync/lip-sync-env/lib/python3.10/site-packages/torchvision/datasets/kinetics.py_dl_wrap   s   r   c                )       s,  e Zd ZdZddddZddddZ			
															d5dededededee dedee	 de
edf dedededeeeef  deded ed!ed"ed#ed$ed%df( fd&d'Zd6d(d)Zd6d*d+Zd6d,d-Zed%eeef fd.d/Zd%efd0d1Zd2ed%e
eeef fd3d4Z  ZS )7Kineticsuz  `Generic Kinetics <https://www.deepmind.com/open-source/kinetics>`_
    dataset.

    Kinetics-400/600/700 are action recognition video datasets.
    This dataset consider every video as a collection of video clips of fixed size, specified
    by ``frames_per_clip``, where the step in frames between each clip is given by
    ``step_between_clips``.

    To give an example, for 2 videos with 10 and 15 frames respectively, if ``frames_per_clip=5``
    and ``step_between_clips=5``, the dataset size will be (2 + 3) = 5, where the first two
    elements will come from video 1, and the next three elements from video 2.
    Note that we drop clips which do not have exactly ``frames_per_clip`` elements, so not all
    frames in a video might be present.

    Args:
        root (string): Root directory of the Kinetics Dataset.
            Directory should be structured as follows:
            .. code::

                root/
                ├── split
                │   ├──  class1
                │   │   ├──  clip1.mp4
                │   │   ├──  clip2.mp4
                │   │   ├──  clip3.mp4
                │   │   ├──  ...
                │   ├──  class2
                │   │   ├──   clipx.mp4
                │   │    └── ...

            Note: split is appended automatically using the split argument.
        frames_per_clip (int): number of frames in a clip
        num_classes (int): select between Kinetics-400 (default), Kinetics-600, and Kinetics-700
        split (str): split of the dataset to consider; supports ``"train"`` (default) ``"val"`` ``"test"``
        frame_rate (float): If omitted, interpolate different frame rate for each clip.
        step_between_clips (int): number of frames between each clip
        transform (callable, optional): A function/transform that  takes in a TxHxWxC video
            and returns a transformed version.
        download (bool): Download the official version of the dataset to root folder.
        num_workers (int): Use multiple workers for VideoClips creation
        num_download_workers (int): Use multiprocessing in order to speed up download.
        output_format (str, optional): The format of the output video tensors (before transforms).
            Can be either "THWC" or "TCHW" (default).
            Note that in most other utils and datasets, the default is actually "THWC".

    Returns:
        tuple: A 3-tuple with the following entries:

            - video (Tensor[T, C, H, W] or Tensor[T, H, W, C]): the `T` video frames in torch.uint8 tensor
            - audio(Tensor[K, L]): the audio frames, where `K` is the number of channels
              and `L` is the number of points in torch.float tensor
            - label (int): class of the video clip

    Raises:
        RuntimeError: If ``download is True`` and the video archives are already extracted.
    zChttps://s3.amazonaws.com/kinetics/400/{split}/k400_{split}_path.txtzChttps://s3.amazonaws.com/kinetics/600/{split}/k600_{split}_path.txtzMhttps://s3.amazonaws.com/kinetics/700_2020/{split}/k700_2020_{split}_path.txt400Z600Z700z=https://s3.amazonaws.com/kinetics/400/annotations/{split}.csvz=https://s3.amazonaws.com/kinetics/600/annotations/{split}.csvzBhttps://s3.amazonaws.com/kinetics/700_2020/annotations/{split}.csvr   trainNr   ZaviZmp4Fr   TCHWrootframes_per_clipnum_classessplit
frame_ratestep_between_clips	transform
extensions.downloadnum_download_workersnum_workers_precomputed_metadata_video_width_video_height_video_min_dimension_audio_samples_audio_channels_legacyoutput_formatr   c                    s   t |dg dd| _|| _|
| _|| _|| _|r+td || _d| _d}|	r*t	dnt
||| _t |dg d	d| _|	rB|   t | j t| j\| _}t| j||d d
| _dd | jD }t||||||||||||d| _|| _d S )Nr$   r   )argZvalid_valueszUsing legacy structureunknownZTHWCz2Cannot download the videos using legacy_structure.r%   )r   valtest)Zis_valid_filec                 S   s   g | ]}|d  qS )r   r   ).0xr   r   r   
<listcomp>   s    z%Kinetics.__init__.<locals>.<listcomp>)r,   r.   r/   r0   r1   r2   r4   )r   r$   r)   r+   r"   r3   printsplit_folderr%   
ValueErrorr   joindownload_and_process_videossuper__init__r   classesr   samplesr   video_clipsr(   )selfr"   r#   r$   r%   r&   r'   r(   r)   r*   r+   r,   r-   r.   r/   r0   r1   r2   r3   r4   Zclass_to_idxZ
video_list	__class__r   r   rB   [   sH   
zKinetics.__init__c                 C   sb   t   }|   t   }td|| d  |   t   }td|| d  td|| d  dS )zEDownloads all the videos to the _root_ folder in the expected format.z%Elapsed time for downloading in mins <   z$Elapsed time for processing in mins zElapsed time overall in mins N)time_download_videosr<   _make_ds_structure)rF   ZticZtocZtoc2r   r   r   r@      s   z$Kinetics.download_and_process_videosc           
      C   s   t | jrtd| j dt | jd}t | jd}| j| j j| j	d}t |t 
|}t|s:t|| t|}dd |  D }W d   n1 sTw   Y  | jd	krl|D ]	}t||| j q`dS tt|| j}t| j}	|	|| dS )
a  download tarballs containing the video to "tars" folder and extract them into the _split_ folder where
        split is one of the official dataset splits.

        Raises:
            RuntimeError: if download folder exists, break to prevent downloading entire dataset again.
        zThe directory z[ already exists. If you want to re-download or re-extract the images, delete the directory.Ztarsfilesr%   c                 S   s   g | ]
}t jj|d dqS )z/,:)safe)urllibparsequote)r9   r   r   r   r   r;      s    z-Kinetics._download_videos.<locals>.<listcomp>Nr   )r   existsr=   RuntimeErrorr?   r"   	_TAR_URLSr$   formatr%   basenamer   r   openread
splitlinesr+   r   r   r   r   map)
rF   Ztar_pathZfile_list_pathZ	split_urlZsplit_url_filepathfileZlist_video_urlsr   partZpoolprocr   r   r   rK      s(   



zKinetics._download_videosc           
   
   C   s0  t | jd}tt || j ds!t| j| j j| jd| t || j d}d}t	|]}t
|}|D ]L}|j|d t|d t|d d}|d	 d
ddddddd}tjt | j|dd t | j|}	t |	rt|	t | j|| q9W d   dS 1 sw   Y  dS )u   move videos from
        split_folder/
            ├── clip1.avi
            ├── clip2.avi

        to the correct format as described below:
        split_folder/
            ├── class1
            │   ├── clip1.avi

        annotationsz.csvrN   z{ytid}_{start:06}_{end:06}.mp4Z
youtube_idZ
time_startZtime_end)Zytidstartendlabel _' ()T)exist_okN)r   r?   r"   r   r%   r   _ANNOTATION_URLSr$   rV   rX   csv
DictReaderintreplaceosmakedirsr=   isfile)
rF   Zannotation_pathr^   Zfile_fmtstrZcsvfilereaderrowfra   Zdownloaded_filer   r   r   rL      s0   



(
"zKinetics._make_ds_structurec                 C   s   | j jS r   )rE   metadatarF   r   r   r   rt      s   zKinetics.metadatac                 C   s
   | j  S r   )rE   Z	num_clipsru   r   r   r   __len__   s   
zKinetics.__len__idxc                 C   s@   | j |\}}}}| j| d }| jd ur| |}|||fS )Nr   )rE   Zget_cliprD   r(   )rF   rw   ZvideoZaudioinfoZ	video_idxra   r   r   r   __getitem__   s
   


zKinetics.__getitem__)r   r   Nr   Nr    Fr   r   Nr   r   r   r   r   Fr!   )r   N)__name__
__module____qualname____doc__rU   ri   strrl   r   r   r	   boolr   r   rB   r@   rK   rL   propertyrt   rv   r
   ry   __classcell__r   r   rG   r   r      s    :

	

B

#$r   ) rj   rn   rJ   rP   	functoolsr   multiprocessingr   r   typingr   r   r   r   r	   Ztorchr
   folderr   r   utilsr   r   r   r   Zvideo_utilsr   Zvisionr   r~   r   r   r   r   r   r   <module>   s    