o
    "i*                     @   s"  d Z ddgZddlmZmZ ddlZddlmZ ddlmZ	 dd	l
mZmZ 	ddededee dee def
ddZ		
	ddedee dee dee deeeef f
ddZ		
	ddedee dee dee deeeef f
ddZ	
ddedee dededeeeef f
ddZdS )zCImplement various linear algebra algorithms for low rank matrices.
svd_lowrankpca_lowrank    )OptionalTupleN)Tensor   )_linalg_utils)handle_torch_functionhas_torch_function   AqniterMreturnc                 C   s  |du rdn|}| j dd \}}t| }tj}tj|||| jd}t| }	|du rStj	|| |j
}
t|D ]}tj	||	|
j
}
tj	|| |
j
}
q:|
S t|}tj	|| |||| j
}
t|D ] }tj	||	|
|||
 j
}
tj	|| |
|||
 j
}
qk|
S )a8  Return tensor :math:`Q` with :math:`q` orthonormal columns such
    that :math:`Q Q^H A` approximates :math:`A`. If :math:`M` is
    specified, then :math:`Q` is such that :math:`Q Q^H (A - M)`
    approximates :math:`A - M`.

    .. note:: The implementation is based on the Algorithm 4.4 from
              Halko et al, 2009.

    .. note:: For an adequate approximation of a k-rank matrix
              :math:`A`, where k is not known in advance but could be
              estimated, the number of :math:`Q` columns, q, can be
              choosen according to the following criteria: in general,
              :math:`k <= q <= min(2*k, m, n)`. For large low-rank
              matrices, take :math:`q = k + 5..10`.  If k is
              relatively small compared to :math:`min(m, n)`, choosing
              :math:`q = k + 0..2` may be sufficient.

    .. note:: To obtain repeatable results, reset the seed for the
              pseudorandom number generator

    Args::
        A (Tensor): the input tensor of size :math:`(*, m, n)`

        q (int): the dimension of subspace spanned by :math:`Q`
                 columns.

        niter (int, optional): the number of subspace iterations to
                               conduct; ``niter`` must be a
                               nonnegative integer. In most cases, the
                               default value 2 is more than enough.

        M (Tensor, optional): the input tensor's mean of size
                              :math:`(*, 1, n)`.

    References::
        - Nathan Halko, Per-Gunnar Martinsson, and Joel Tropp, Finding
          structure with randomness: probabilistic algorithms for
          constructing approximate matrix decompositions,
          arXiv:0909.4061 [math.NA; math.PR], 2009 (available at
          `arXiv <http://arxiv.org/abs/0909.4061>`_).
    Nr   dtypedevice)shape_utilsget_floating_dtypematmultorchZrandnr   ZtransjugatelinalgZqrQrange)r   r   r   r   mnr   r   RZA_Hr   iZM_H r!   ]/var/www/html/eduruby.in/lip-sync/lip-sync-env/lib/python3.10/site-packages/torch/_lowrank.pyget_approximate_basis   s$   -


 r#      c                 C   s\   t j s&| |f}ttt|t jtdfs&t|r&t	t
|| |||dS t| |||dS )a_  Return the singular value decomposition ``(U, S, V)`` of a matrix,
    batches of matrices, or a sparse matrix :math:`A` such that
    :math:`A \approx U diag(S) V^T`. In case :math:`M` is given, then
    SVD is computed for the matrix :math:`A - M`.

    .. note:: The implementation is based on the Algorithm 5.1 from
              Halko et al, 2009.

    .. note:: To obtain repeatable results, reset the seed for the
              pseudorandom number generator

    .. note:: The input is assumed to be a low-rank matrix.

    .. note:: In general, use the full-rank SVD implementation
              :func:`torch.linalg.svd` for dense matrices due to its 10-fold
              higher performance characteristics. The low-rank SVD
              will be useful for huge sparse matrices that
              :func:`torch.linalg.svd` cannot handle.

    Args::
        A (Tensor): the input tensor of size :math:`(*, m, n)`

        q (int, optional): a slightly overestimated rank of A.

        niter (int, optional): the number of subspace iterations to
                               conduct; niter must be a nonnegative
                               integer, and defaults to 2

        M (Tensor, optional): the input tensor's mean of size
                              :math:`(*, 1, n)`.

    References::
        - Nathan Halko, Per-Gunnar Martinsson, and Joel Tropp, Finding
          structure with randomness: probabilistic algorithms for
          constructing approximate matrix decompositions,
          arXiv:0909.4061 [math.NA; math.PR], 2009 (available at
          `arXiv <https://arxiv.org/abs/0909.4061>`_).

    N)r   r   r   )r   jitis_scriptingsetmaptypeissubsetr   r
   r	   r   _svd_lowrank)r   r   r   r   Z
tensor_opsr!   r!   r"   r   T   s   
-c                 C   s  |d u rdn|}| j dd  \}}tj}|d u rd }nt|}t| }||k s-||krt||||d}	t|	}
|d u rD|| |
}n
|| |
|||
 }|j d |ks\J |j |f|j d |ksjJ |j |f|j d |j d ksyJ |j tjj|dd\}}}|j	}|	|}ndt| |||d}	t|	}
|d u r|||
}n
|||
|||
 }t|}|j d |ksJ |j |f|j d |ksJ |j |f|j d |j d ksJ |j tjj|dd\}}}|j	}|	|}|||fS )Nr$   r   r   r   F)Zfull_matrices)
r   r   r   	transposer#   	conjugater   r   ZsvdZmH)r   r   r   r   r   r   r   ZM_tZA_tr   ZQ_cZB_tUSZVhVBr!   r!   r"   r+      s@   






r+   Tcenterc                 C   s  t j st| t jurt| frtt| f| |||dS | jdd \}}|du r0t	d||}n|dkr;|t	||ksHt
d| dt	|| |dksTt
d| d	t| }|sct| ||dd
S t| rt| jdkrst
dt jj| dd| }| d }t jdt||j|jd}	||	d< t j|	| |df|| jd}
t j| jdd d|f || jd}tt j|
|}t| |||d
S | jddd}t| | ||dd
S )a  Performs linear Principal Component Analysis (PCA) on a low-rank
    matrix, batches of such matrices, or sparse matrix.

    This function returns a namedtuple ``(U, S, V)`` which is the
    nearly optimal approximation of a singular value decomposition of
    a centered matrix :math:`A` such that :math:`A = U diag(S) V^T`.

    .. note:: The relation of ``(U, S, V)`` to PCA is as follows:

                - :math:`A` is a data matrix with ``m`` samples and
                  ``n`` features

                - the :math:`V` columns represent the principal directions

                - :math:`S ** 2 / (m - 1)` contains the eigenvalues of
                  :math:`A^T A / (m - 1)` which is the covariance of
                  ``A`` when ``center=True`` is provided.

                - ``matmul(A, V[:, :k])`` projects data to the first k
                  principal components

    .. note:: Different from the standard SVD, the size of returned
              matrices depend on the specified rank and q
              values as follows:

                - :math:`U` is m x q matrix

                - :math:`S` is q-vector

                - :math:`V` is n x q matrix

    .. note:: To obtain repeatable results, reset the seed for the
              pseudorandom number generator

    Args:

        A (Tensor): the input tensor of size :math:`(*, m, n)`

        q (int, optional): a slightly overestimated rank of
                           :math:`A`. By default, ``q = min(6, m,
                           n)``.

        center (bool, optional): if True, center the input tensor,
                                 otherwise, assume that the input is
                                 centered.

        niter (int, optional): the number of subspace iterations to
                               conduct; niter must be a nonnegative
                               integer, and defaults to 2.

    References::

        - Nathan Halko, Per-Gunnar Martinsson, and Joel Tropp, Finding
          structure with randomness: probabilistic algorithms for
          constructing approximate matrix decompositions,
          arXiv:0909.4061 [math.NA; math.PR], 2009 (available at
          `arXiv <http://arxiv.org/abs/0909.4061>`_).

    )r   r4   r   r   Nr$   r   zq(=z>) must be non-negative integer and not greater than min(m, n)=zniter(=z) must be non-negative integerr,   r   z8pca_lowrank input is expected to be 2-dimensional tensor)r   )dimr   r   T)r5   Zkeepdim)r   r%   r&   r)   r   r
   r	   r   r   min
ValueErrorr   r   r+   Z	is_sparselensparsesumindicesZzerosr   r   Zsparse_coo_tensorvaluesZonesr.   mmmean)r   r   r4   r   r   r   r   cZcolumn_indicesr;   ZC_tZ	ones_m1_tr   Cr!   r!   r"   r      sJ   
?

$)r   N)r$   r   N)NTr   )__doc____all__typingr   r   r   r    r   r   Z	overridesr	   r
   intr#   r   r+   boolr   r!   r!   r!   r"   <module>   sv    
H
:
4