o
    i                     @   st   d dl mZ d dlmZmZ d dlmZ d dlmZ G dd deZ	d dl
mZmZ d dlmZ d	d
 Zeed< dS )    )_sympify)SBasic)NonSquareMatrixError)MatPowc                   @   sx   e Zd ZdZdZejZejfddZe	dd Z
e	dd Zd	d
 Zdd Zdd Zdd Zdd Zdd Zdd ZdS )Inversea  
    The multiplicative inverse of a matrix expression

    This is a symbolic object that simply stores its argument without
    evaluating it. To actually compute the inverse, use the ``.inverse()``
    method of matrices.

    Examples
    ========

    >>> from sympy import MatrixSymbol, Inverse
    >>> A = MatrixSymbol('A', 3, 3)
    >>> B = MatrixSymbol('B', 3, 3)
    >>> Inverse(A)
    A**(-1)
    >>> A.inverse() == Inverse(A)
    True
    >>> (A*B).inverse()
    B**(-1)*A**(-1)
    >>> Inverse(A*B)
    (A*B)**(-1)

    Tc                 C   sB   t |}t |}|jstd|jdu rtd| t| ||S )Nzmat should be a matrixFzInverse of non-square matrix %s)r   Z	is_Matrix	TypeErrorZ	is_squarer   r   __new__)clsmatexp r   q/var/www/html/eduruby.in/lip-sync/lip-sync-env/lib/python3.10/site-packages/sympy/matrices/expressions/inverse.pyr	   #   s   
zInverse.__new__c                 C   s
   | j d S Nr   )argsselfr   r   r   arg.   s   
zInverse.argc                 C   s   | j jS N)r   shaper   r   r   r   r   2   s   zInverse.shapec                 C   s   | j S r   )r   r   r   r   r   _eval_inverse6   s   zInverse._eval_inversec                 C      t | j S r   )r   r   Z	transposer   r   r   r   _eval_transpose9      zInverse._eval_transposec                 C   r   r   )r   r   Zadjointr   r   r   r   _eval_adjoint<   r   zInverse._eval_adjointc                 C   r   r   )r   r   	conjugater   r   r   r   _eval_conjugate?   r   zInverse._eval_conjugatec                 C   s   ddl m} d|| j S )Nr   )det   )Z&sympy.matrices.expressions.determinantr   r   )r   r   r   r   r   _eval_determinantB   s   zInverse._eval_determinantc                 K   sB   d|v r|d dkr| S | j }|ddr|jdi |}| S )NZ
inv_expandFdeepTr   )r   getdoitZinverse)r   hintsr   r   r   r   r"   F   s   zInverse.doitc                 C   sB   | j d }||}|D ]}| j| j 9  _| j| 9  _q|S r   )r   _eval_derivative_matrix_linesZfirst_pointerTZsecond_pointer)r   xr   linesliner   r   r   r$   P   s   

z%Inverse._eval_derivative_matrix_linesN)__name__
__module____qualname____doc__Z
is_Inverser   ZNegativeOner   r	   propertyr   r   r   r   r   r   r   r"   r$   r   r   r   r   r      s     


r   )askQ)handlers_dictc                 C   sT   t t| |r| jjS t t| |r| j S t t| |r(td| j | S )z
    >>> from sympy import MatrixSymbol, Q, assuming, refine
    >>> X = MatrixSymbol('X', 2, 2)
    >>> X.I
    X**(-1)
    >>> with assuming(Q.orthogonal(X)):
    ...     print(refine(X.I))
    X.T
    zInverse of singular matrix %s)	r.   r/   Z
orthogonalr   r%   Zunitaryr   Zsingular
ValueError)exprZassumptionsr   r   r   refine_Inverse]   s   

r3   N)Zsympy.core.sympifyr   Z
sympy.corer   r   Zsympy.matrices.exceptionsr   Z!sympy.matrices.expressions.matpowr   r   Zsympy.assumptions.askr.   r/   Zsympy.assumptions.refiner0   r3   r   r   r   r   <module>   s    Q