o
    i                     @   s   d dl mZ d dlmZ d dlmZ d dlmZ d dlm	Z	 d dl
mZ G dd deZd	d
 ZG dd deZdd Zd dlmZmZ d dlmZ dd Zeed< dS )    )Basic)Expr)S)sympify)NonSquareMatrixError)
MatrixBasec                   @   s<   e Zd ZdZdZdd Zedd Zedd Zd	d
 Z	dS )Determinanta  Matrix Determinant

    Represents the determinant of a matrix expression.

    Examples
    ========

    >>> from sympy import MatrixSymbol, Determinant, eye
    >>> A = MatrixSymbol('A', 3, 3)
    >>> Determinant(A)
    Determinant(A)
    >>> Determinant(eye(3)).doit()
    1
    Tc                 C   s<   t |}|jstdt| |jdu rtdt| |S )Nz&Input to Determinant, %s, not a matrixFzDet of a non-square matrix)r   	is_Matrix	TypeErrorstrZ	is_squarer   r   __new__clsmat r   u/var/www/html/eduruby.in/lip-sync/lip-sync-env/lib/python3.10/site-packages/sympy/matrices/expressions/determinant.pyr      s   
zDeterminant.__new__c                 C   
   | j d S Nr   argsselfr   r   r   arg$      
zDeterminant.argc                 C   s
   | j jjS N)r   kindZelement_kindr   r   r   r   r   (   r   zDeterminant.kindc                 K   s:   | j }|ddr|jdi |}| }|d ur|S | S )NdeepTr   )r   getdoitZ_eval_determinant)r   hintsr   resultr   r   r   r   ,   s   zDeterminant.doitN)
__name__
__module____qualname____doc__Zis_commutativer   propertyr   r   r   r   r   r   r   r   	   s    


r   c                 C      t |  S )z Matrix Determinant

    Examples
    ========

    >>> from sympy import MatrixSymbol, det, eye
    >>> A = MatrixSymbol('A', 3, 3)
    >>> det(A)
    Determinant(A)
    >>> det(eye(3))
    1
    )r   r   Zmatexprr   r   r   det8   s   r(   c                   @   s.   e Zd ZdZdd Zedd Zd
ddZd	S )	Permanenta  Matrix Permanent

    Represents the permanent of a matrix expression.

    Examples
    ========

    >>> from sympy import MatrixSymbol, Permanent, ones
    >>> A = MatrixSymbol('A', 3, 3)
    >>> Permanent(A)
    Permanent(A)
    >>> Permanent(ones(3, 3)).doit()
    6
    c                 C   s*   t |}|jstdt| t| |S )Nz$Input to Permanent, %s, not a matrix)r   r	   r
   r   r   r   r   r   r   r   r   X   s   zPermanent.__new__c                 C   r   r   r   r   r   r   r   r   _   r   zPermanent.argFc                 K   s   t | jtr| j S | S r   )
isinstancer   r   per)r   expandr   r   r   r   r   c   s   
zPermanent.doitN)F)r!   r"   r#   r$   r   r%   r   r   r   r   r   r   r)   H   s    
r)   c                 C   r&   )a   Matrix Permanent

    Examples
    ========

    >>> from sympy import MatrixSymbol, Matrix, per, ones
    >>> A = MatrixSymbol('A', 3, 3)
    >>> per(A)
    Permanent(A)
    >>> per(ones(5, 5))
    120
    >>> M = Matrix([1, 2, 5])
    >>> per(M)
    8
    )r)   r   r'   r   r   r   r+   i   s   r+   )askQ)handlers_dictc                 C   sL   t t| j|rtjS t t| j|rtjS t t| j|r$tjS | S )z
    >>> from sympy import MatrixSymbol, Q, assuming, refine, det
    >>> X = MatrixSymbol('X', 2, 2)
    >>> det(X)
    Determinant(X)
    >>> with assuming(Q.orthogonal(X)):
    ...     print(refine(det(X)))
    1
    )	r-   r.   Z
orthogonalr   r   ZOneZsingularZZeroZunit_triangular)exprZassumptionsr   r   r   refine_Determinant   s   
r1   N)Zsympy.core.basicr   Zsympy.core.exprr   Zsympy.core.singletonr   Zsympy.core.sympifyr   Zsympy.matrices.exceptionsr   Zsympy.matrices.matrixbaser   r   r(   r)   r+   Zsympy.assumptions.askr-   r.   Zsympy.assumptions.refiner/   r1   r   r   r   r   <module>   s    /!