o
    iB                     @   s  d dl Z d dlZd dlZd dlmZmZmZmZmZm	Z	m
Z
mZmZmZ d dlmZmZ d dlmZ ddlmZmZ g dZedd	d
ZedZeeef Ze
edf ZedeeZG dd dee ZG dd dee ZG dd dee
edf  ZG dd dee Z G dd dee Z!G dd deZ"G dd dee Z#efdee de	ee$e%f  dee dee#e  fd d!Z&dS )"    N)
GenericIterableIteratorListOptionalSequenceTupleTypeVarUnionDict)default_generatorrandperm)_accumulate   )	GeneratorTensor)DatasetIterableDatasetTensorDatasetStackDatasetConcatDatasetChainDatasetSubsetrandom_splitT_coT)	covariantT.T_stackc                   @   s(   e Zd ZdZdefddZddd	Zd
S )r   a  An abstract class representing a :class:`Dataset`.

    All datasets that represent a map from keys to data samples should subclass
    it. All subclasses should overwrite :meth:`__getitem__`, supporting fetching a
    data sample for a given key. Subclasses could also optionally overwrite
    :meth:`__len__`, which is expected to return the size of the dataset by many
    :class:`~torch.utils.data.Sampler` implementations and the default options
    of :class:`~torch.utils.data.DataLoader`. Subclasses could also
    optionally implement :meth:`__getitems__`, for speedup batched samples
    loading. This method accepts list of indices of samples of batch and returns
    list of samples.

    .. note::
      :class:`~torch.utils.data.DataLoader` by default constructs a index
      sampler that yields integral indices.  To make it work with a map-style
      dataset with non-integral indices/keys, a custom sampler must be provided.
    returnc                 C      t d)Nz3Subclasses of Dataset should implement __getitem__.NotImplementedErrorselfindex r%   g/var/www/html/eduruby.in/lip-sync/lip-sync-env/lib/python3.10/site-packages/torch/utils/data/dataset.py__getitem__<      zDataset.__getitem__otherDataset[T_co]ConcatDataset[T_co]c                 C      t | |gS N)r   r#   r)   r%   r%   r&   __add__C      zDataset.__add__N)r)   r*   r   r+   )__name__
__module____qualname____doc__r   r'   r/   r%   r%   r%   r&   r   )   s    r   c                   @   s4   e Zd ZdZdee fddZdee fddZdS )	r   aH  An iterable Dataset.

    All datasets that represent an iterable of data samples should subclass it.
    Such form of datasets is particularly useful when data come from a stream.

    All subclasses should overwrite :meth:`__iter__`, which would return an
    iterator of samples in this dataset.

    When a subclass is used with :class:`~torch.utils.data.DataLoader`, each
    item in the dataset will be yielded from the :class:`~torch.utils.data.DataLoader`
    iterator. When :attr:`num_workers > 0`, each worker process will have a
    different copy of the dataset object, so it is often desired to configure
    each copy independently to avoid having duplicate data returned from the
    workers. :func:`~torch.utils.data.get_worker_info`, when called in a worker
    process, returns information about the worker. It can be used in either the
    dataset's :meth:`__iter__` method or the :class:`~torch.utils.data.DataLoader` 's
    :attr:`worker_init_fn` option to modify each copy's behavior.

    Example 1: splitting workload across all workers in :meth:`__iter__`::

        >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_DATALOADER)
        >>> # xdoctest: +SKIP("Fails on MacOS12")
        >>> class MyIterableDataset(torch.utils.data.IterableDataset):
        ...     def __init__(self, start, end):
        ...         super(MyIterableDataset).__init__()
        ...         assert end > start, "this example code only works with end >= start"
        ...         self.start = start
        ...         self.end = end
        ...
        ...     def __iter__(self):
        ...         worker_info = torch.utils.data.get_worker_info()
        ...         if worker_info is None:  # single-process data loading, return the full iterator
        ...             iter_start = self.start
        ...             iter_end = self.end
        ...         else:  # in a worker process
        ...             # split workload
        ...             per_worker = int(math.ceil((self.end - self.start) / float(worker_info.num_workers)))
        ...             worker_id = worker_info.id
        ...             iter_start = self.start + worker_id * per_worker
        ...             iter_end = min(iter_start + per_worker, self.end)
        ...         return iter(range(iter_start, iter_end))
        ...
        >>> # should give same set of data as range(3, 7), i.e., [3, 4, 5, 6].
        >>> ds = MyIterableDataset(start=3, end=7)

        >>> # Single-process loading
        >>> print(list(torch.utils.data.DataLoader(ds, num_workers=0)))
        [tensor([3]), tensor([4]), tensor([5]), tensor([6])]

        >>> # xdoctest: +REQUIRES(POSIX)
        >>> # Mult-process loading with two worker processes
        >>> # Worker 0 fetched [3, 4].  Worker 1 fetched [5, 6].
        >>> # xdoctest: +IGNORE_WANT("non deterministic")
        >>> print(list(torch.utils.data.DataLoader(ds, num_workers=2)))
        [tensor([3]), tensor([5]), tensor([4]), tensor([6])]

        >>> # With even more workers
        >>> # xdoctest: +IGNORE_WANT("non deterministic")
        >>> print(list(torch.utils.data.DataLoader(ds, num_workers=12)))
        [tensor([3]), tensor([5]), tensor([4]), tensor([6])]

    Example 2: splitting workload across all workers using :attr:`worker_init_fn`::

        >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_DATALOADER)
        >>> class MyIterableDataset(torch.utils.data.IterableDataset):
        ...     def __init__(self, start, end):
        ...         super(MyIterableDataset).__init__()
        ...         assert end > start, "this example code only works with end >= start"
        ...         self.start = start
        ...         self.end = end
        ...
        ...     def __iter__(self):
        ...         return iter(range(self.start, self.end))
        ...
        >>> # should give same set of data as range(3, 7), i.e., [3, 4, 5, 6].
        >>> ds = MyIterableDataset(start=3, end=7)

        >>> # Single-process loading
        >>> print(list(torch.utils.data.DataLoader(ds, num_workers=0)))
        [3, 4, 5, 6]
        >>>
        >>> # Directly doing multi-process loading yields duplicate data
        >>> print(list(torch.utils.data.DataLoader(ds, num_workers=2)))
        [3, 3, 4, 4, 5, 5, 6, 6]

        >>> # Define a `worker_init_fn` that configures each dataset copy differently
        >>> def worker_init_fn(worker_id):
        ...     worker_info = torch.utils.data.get_worker_info()
        ...     dataset = worker_info.dataset  # the dataset copy in this worker process
        ...     overall_start = dataset.start
        ...     overall_end = dataset.end
        ...     # configure the dataset to only process the split workload
        ...     per_worker = int(math.ceil((overall_end - overall_start) / float(worker_info.num_workers)))
        ...     worker_id = worker_info.id
        ...     dataset.start = overall_start + worker_id * per_worker
        ...     dataset.end = min(dataset.start + per_worker, overall_end)
        ...

        >>> # Mult-process loading with the custom `worker_init_fn`
        >>> # Worker 0 fetched [3, 4].  Worker 1 fetched [5, 6].
        >>> print(list(torch.utils.data.DataLoader(ds, num_workers=2, worker_init_fn=worker_init_fn)))
        [3, 5, 4, 6]

        >>> # With even more workers
        >>> print(list(torch.utils.data.DataLoader(ds, num_workers=12, worker_init_fn=worker_init_fn)))
        [3, 4, 5, 6]
    r   c                 C   r   )Nz8Subclasses of IterableDataset should implement __iter__.r    r#   r%   r%   r&   __iter__   r(   zIterableDataset.__iter__r)   c                 C   r,   r-   )r   r.   r%   r%   r&   r/      r0   zIterableDataset.__add__N)	r1   r2   r3   r4   r   r   r6   r   r/   r%   r%   r%   r&   r   K   s    kr   c                   @   sD   e Zd ZU dZeedf ed< deddfddZdd	 Zd
d Z	dS )r   zDataset wrapping tensors.

    Each sample will be retrieved by indexing tensors along the first dimension.

    Args:
        *tensors (Tensor): tensors that have the same size of the first dimension.
    .tensorsr   Nc                    s(   t  fdd D sJ d | _d S )Nc                 3   s(    | ]} d   d | d kV  qdS )r   N)size.0Ztensorr7   r%   r&   	<genexpr>   s   & z)TensorDataset.__init__.<locals>.<genexpr>zSize mismatch between tensors)allr7   )r#   r7   r%   r;   r&   __init__   s   
zTensorDataset.__init__c                    s   t  fdd| jD S )Nc                 3       | ]}|  V  qd S r-   r%   r9   r$   r%   r&   r<          z,TensorDataset.__getitem__.<locals>.<genexpr>)tupler7   r"   r%   r@   r&   r'      s   zTensorDataset.__getitem__c                 C   s   | j d dS Nr   )r7   r8   r5   r%   r%   r&   __len__   s   zTensorDataset.__len__)
r1   r2   r3   r4   r   r   __annotations__r>   r'   rD   r%   r%   r%   r&   r      s   
 r   c                   @   sP   e Zd ZU dZeeef ed< dee	 dee	 ddfddZ
d	d
 Zdd ZdS )r   a  Dataset as a stacking of multiple datasets.

    This class is useful to assemble different parts of complex input data, given as datasets.

    Example:
        >>> # xdoctest: +SKIP
        >>> images = ImageDataset()
        >>> texts = TextDataset()
        >>> tuple_stack = StackDataset(images, texts)
        >>> tuple_stack[0] == (images[0], texts[0])
        >>> dict_stack = StackDataset(image=images, text=texts)
        >>> dict_stack[0] == {'image': images[0], 'text': texts[0]}

    Args:
        *args (Dataset): Datasets for stacking returned as tuple.
        **kwargs (Dataset): Datasets for stacking returned as dict.
    datasetsargskwargsr   Nc                    s   |r#|rt dt|d  _t fdd|D rt d| _d S |rFt| }t|d  _t fdd|D rAt d| _d S t d)NztSupported either ``tuple``- (via ``args``) or``dict``- (via ``kwargs``) like input/output, but both types are given.r   c                 3       | ]
} j t|kV  qd S r-   _lengthlenr:   datasetr5   r%   r&   r<          z(StackDataset.__init__.<locals>.<genexpr>zSize mismatch between datasetsc                 3   rI   r-   rJ   rM   r5   r%   r&   r<      rO   z%At least one dataset should be passed)
ValueErrorrL   rK   anyrF   listvalues)r#   rG   rH   tmpr%   r5   r&   r>      s   

zStackDataset.__init__c                    s<   t | jtr fdd| j D S t fdd| jD S )Nc                    s   i | ]	\}}||  qS r%   r%   )r:   krN   r@   r%   r&   
<dictcomp>   s    z,StackDataset.__getitem__.<locals>.<dictcomp>c                 3   r?   r-   r%   rM   r@   r%   r&   r<      rA   z+StackDataset.__getitem__.<locals>.<genexpr>)
isinstancerF   dictitemsrB   r"   r%   r@   r&   r'      s   zStackDataset.__getitem__c                 C   s   | j S r-   )rK   r5   r%   r%   r&   rD     s   zStackDataset.__len__)r1   r2   r3   r4   r
   rB   rX   rE   r   r   r>   r'   rD   r%   r%   r%   r&   r      s   
 r   c                       st   e Zd ZU dZeee  ed< ee ed< e	dd Z
dee ddf fdd	Zd
d Zdd Zedd Z  ZS )r   zDataset as a concatenation of multiple datasets.

    This class is useful to assemble different existing datasets.

    Args:
        datasets (sequence): List of datasets to be concatenated
    rF   cumulative_sizesc                 C   s6   g d}}| D ]}t |}|||  ||7 }q|S rC   )rL   append)sequencerselr%   r%   r&   cumsum  s   

zConcatDataset.cumsumr   Nc                    sZ   t    t|| _t| jdksJ d| jD ]}t|tr#J dq| | j| _d S )Nr   z(datasets should not be an empty iterablez.ConcatDataset does not support IterableDataset)	superr>   rR   rF   rL   rW   r   ra   rZ   )r#   rF   d	__class__r%   r&   r>     s   


zConcatDataset.__init__c                 C   s
   | j d S )N)rZ   r5   r%   r%   r&   rD   !     
zConcatDataset.__len__c                 C   sf   |dk r| t | krtdt | | }t| j|}|dkr#|}n	|| j|d   }| j| | S )Nr   z8absolute value of index should not exceed dataset length   )rL   rP   bisectbisect_rightrZ   rF   )r#   idxZdataset_idxZ
sample_idxr%   r%   r&   r'   $  s   zConcatDataset.__getitem__c                 C   s   t jdtdd | jS )Nz:cummulative_sizes attribute is renamed to cumulative_sizes   )
stacklevel)warningswarnDeprecationWarningrZ   r5   r%   r%   r&   cummulative_sizes0  s   zConcatDataset.cummulative_sizes)r1   r2   r3   r4   r   r   r   rE   intstaticmethodra   r   r>   rD   r'   propertyrq   __classcell__r%   r%   rd   r&   r     s   
 
r   c                       s>   e Zd ZdZdee ddf fddZdd Zd	d
 Z  Z	S )r   a_  Dataset for chaining multiple :class:`IterableDataset` s.

    This class is useful to assemble different existing dataset streams. The
    chaining operation is done on-the-fly, so concatenating large-scale
    datasets with this class will be efficient.

    Args:
        datasets (iterable of IterableDataset): datasets to be chained together
    rF   r   Nc                    s   t    || _d S r-   )rb   r>   rF   )r#   rF   rd   r%   r&   r>   A  s   

zChainDataset.__init__c                 c   s.    | j D ]}t|tsJ d|E d H  qd S )N*ChainDataset only supports IterableDataset)rF   rW   r   )r#   rc   r%   r%   r&   r6   E  s
   
zChainDataset.__iter__c                 C   s2   d}| j D ]}t|tsJ d|t|7 }q|S )Nr   rv   )rF   rW   r   rL   )r#   totalrc   r%   r%   r&   rD   J  s
   
zChainDataset.__len__)
r1   r2   r3   r4   r   r   r>   r6   rD   ru   r%   r%   rd   r&   r   7  s
    	r   c                   @   sr   e Zd ZU dZee ed< ee ed< dee dee ddfddZ	dd	 Z
dee dee fd
dZdd ZdS )r   z
    Subset of a dataset at specified indices.

    Args:
        dataset (Dataset): The whole Dataset
        indices (sequence): Indices in the whole set selected for subset
    rN   indicesr   Nc                 C   s   || _ || _d S r-   rN   rx   )r#   rN   rx   r%   r%   r&   r>   ]  s   
zSubset.__init__c                    s2   t |tr j fdd|D  S  j j|  S )Nc                       g | ]} j | qS r%   rx   )r:   ir5   r%   r&   
<listcomp>c      z&Subset.__getitem__.<locals>.<listcomp>)rW   rR   rN   rx   )r#   rk   r%   r5   r&   r'   a  s   
zSubset.__getitem__c                    s>   t t jdd r j fdd|D S  fdd|D S )N__getitems__c                    rz   r%   r{   r:   rk   r5   r%   r&   r}   j  r~   z'Subset.__getitems__.<locals>.<listcomp>c                    s   g | ]
} j  j|  qS r%   ry   r   r5   r%   r&   r}   l  s    )callablegetattrrN   r   )r#   rx   r%   r5   r&   r   f  s   zSubset.__getitems__c                 C   s
   t | jS r-   )rL   rx   r5   r%   r%   r&   rD   n  rg   zSubset.__len__)r1   r2   r3   r4   r   r   rE   r   rr   r>   r'   r   r   rD   r%   r%   r%   r&   r   R  s   
 r   rN   lengths	generatorr   c           
         s&  t t|drnt|dkrng }t|D ]$\}}|dk s |dkr(td| dtt t | }|| qt t| }t	|D ]}|t| }||  d7  < qE|}t|D ]\}}	|	dkrmt
d| d q\t|t krztdtt||d  fd	d
tt||D S )a  
    Randomly split a dataset into non-overlapping new datasets of given lengths.

    If a list of fractions that sum up to 1 is given,
    the lengths will be computed automatically as
    floor(frac * len(dataset)) for each fraction provided.

    After computing the lengths, if there are any remainders, 1 count will be
    distributed in round-robin fashion to the lengths
    until there are no remainders left.

    Optionally fix the generator for reproducible results, e.g.:

    Example:
        >>> # xdoctest: +SKIP
        >>> generator1 = torch.Generator().manual_seed(42)
        >>> generator2 = torch.Generator().manual_seed(42)
        >>> random_split(range(10), [3, 7], generator=generator1)
        >>> random_split(range(30), [0.3, 0.3, 0.4], generator=generator2)

    Args:
        dataset (Dataset): Dataset to be split
        lengths (sequence): lengths or fractions of splits to be produced
        generator (Generator): Generator used for the random permutation.
    rh   r   zFraction at index z is not between 0 and 1zLength of split at index z- is 0. This might result in an empty dataset.zDSum of input lengths does not equal the length of the input dataset!)r   c                    s&   g | ]\}}t  || | qS r%   )r   )r:   offsetlengthry   r%   r&   r}     s   & z random_split.<locals>.<listcomp>)mathisclosesum	enumeraterP   rr   floorrL   r[   rangern   ro   r   tolistzipr   )
rN   r   r   Zsubset_lengthsr|   fracZn_items_in_split	remainderZidx_to_add_atr   r%   ry   r&   r   r  s,   r   )'ri   rn   r   typingr   r   r   r   r   r   r   r	   r
   r   Ztorchr   r   Ztorch._utilsr    r   r   __all__r   r   strZT_dictZT_tupler   r   r   r   r   r   r   r   rr   floatr   r%   r%   r%   r&   <module>   s4    0"v/2!
