o
    i)                     @   s   d dl Z d dlmZ d dlZd dlmZ d dlmZmZ ddlm	Z
 ddlmZ dd	lmZ dd
lmZ g dZG dd deZG dd deZG dd deZG dd deZG dd deeZdS )    N)Any)Tensor)	ParameterUninitializedParameter   )
functional)init   )Module)LazyModuleMixin)BilinearIdentity
LazyLinearLinearc                       s@   e Zd ZdZdededdf fddZdedefd	d
Z  ZS )r   a  A placeholder identity operator that is argument-insensitive.

    Args:
        args: any argument (unused)
        kwargs: any keyword argument (unused)

    Shape:
        - Input: :math:`(*)`, where :math:`*` means any number of dimensions.
        - Output: :math:`(*)`, same shape as the input.

    Examples::

        >>> m = nn.Identity(54, unused_argument1=0.1, unused_argument2=False)
        >>> input = torch.randn(128, 20)
        >>> output = m(input)
        >>> print(output.size())
        torch.Size([128, 20])

    argskwargsreturnNc                    s   t    d S Nsuper__init__)selfr   r   	__class__ f/var/www/html/eduruby.in/lip-sync/lip-sync-env/lib/python3.10/site-packages/torch/nn/modules/linear.pyr   )   s   zIdentity.__init__inputc                 C   s   |S r   r   r   r   r   r   r   forward,   s   zIdentity.forward)	__name__
__module____qualname____doc__r   r   r   r   __classcell__r   r   r   r   r      s    r   c                	       s   e Zd ZU dZddgZeed< eed< eed< 		ddedededdf fd	d
Z	dddZ
dedefddZdefddZ  ZS )r   a&  Applies a linear transformation to the incoming data: :math:`y = xA^T + b`

    This module supports :ref:`TensorFloat32<tf32_on_ampere>`.

    On certain ROCm devices, when using float16 inputs this module will use :ref:`different precision<fp16_on_mi200>` for backward.

    Args:
        in_features: size of each input sample
        out_features: size of each output sample
        bias: If set to ``False``, the layer will not learn an additive bias.
            Default: ``True``

    Shape:
        - Input: :math:`(*, H_{in})` where :math:`*` means any number of
          dimensions including none and :math:`H_{in} = \text{in\_features}`.
        - Output: :math:`(*, H_{out})` where all but the last dimension
          are the same shape as the input and :math:`H_{out} = \text{out\_features}`.

    Attributes:
        weight: the learnable weights of the module of shape
            :math:`(\text{out\_features}, \text{in\_features})`. The values are
            initialized from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})`, where
            :math:`k = \frac{1}{\text{in\_features}}`
        bias:   the learnable bias of the module of shape :math:`(\text{out\_features})`.
                If :attr:`bias` is ``True``, the values are initialized from
                :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where
                :math:`k = \frac{1}{\text{in\_features}}`

    Examples::

        >>> m = nn.Linear(20, 30)
        >>> input = torch.randn(128, 20)
        >>> output = m(input)
        >>> print(output.size())
        torch.Size([128, 30])
    in_featuresout_featuresweightTNbiasr   c                    sr   ||d}t    || _|| _ttj||ffi || _|r-ttj|fi || _n| 	dd  | 
  d S Ndevicedtyper'   )r   r   r$   r%   r   torchemptyr&   r'   register_parameterreset_parameters)r   r$   r%   r'   r*   r+   factory_kwargsr   r   r   r   Z   s   

zLinear.__init__c                 C   sd   t j| jtdd | jd ur0t | j\}}|dkr#dt| nd}t | j| | d S d S )N   )ar   r	   )r   Zkaiming_uniform_r&   mathsqrtr'   Z_calculate_fan_in_and_fan_outuniform_)r   Zfan_in_boundr   r   r   r/   g   s   
zLinear.reset_parametersr   c                 C   s   t || j| jS r   )FZlinearr&   r'   r   r   r   r   r   q   s   zLinear.forwardc                 C   s    d| j  d| j d| jd u S )Nzin_features=z, out_features=z, bias=)r$   r%   r'   r   r   r   r   
extra_reprt   s    zLinear.extra_reprTNNr   Nr   r    r!   r"   Z__constants__int__annotations__r   boolr   r/   r   strr:   r#   r   r   r   r   r   0   s   
 $

r   c                	       s4   e Zd Z		d	dedededdf fddZ  ZS )
NonDynamicallyQuantizableLinearTNr$   r%   r'   r   c                    s   t  j|||||d d S )N)r'   r*   r+   r   )r   r$   r%   r'   r*   r+   r   r   r   r   ~   s   
z(NonDynamicallyQuantizableLinear.__init__r;   )r   r    r!   r>   r@   r   r#   r   r   r   r   rB   }   s    rB   c                       s   e Zd ZU dZg dZeed< eed< eed< eed< 		ddededed	ed
df
 fddZ	dddZ
deded
efddZd
efddZ  ZS )r   a  Applies a bilinear transformation to the incoming data:
    :math:`y = x_1^T A x_2 + b`

    Args:
        in1_features: size of each first input sample
        in2_features: size of each second input sample
        out_features: size of each output sample
        bias: If set to False, the layer will not learn an additive bias.
            Default: ``True``

    Shape:
        - Input1: :math:`(*, H_{in1})` where :math:`H_{in1}=\text{in1\_features}` and
          :math:`*` means any number of additional dimensions including none. All but the last dimension
          of the inputs should be the same.
        - Input2: :math:`(*, H_{in2})` where :math:`H_{in2}=\text{in2\_features}`.
        - Output: :math:`(*, H_{out})` where :math:`H_{out}=\text{out\_features}`
          and all but the last dimension are the same shape as the input.

    Attributes:
        weight: the learnable weights of the module of shape
            :math:`(\text{out\_features}, \text{in1\_features}, \text{in2\_features})`.
            The values are initialized from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})`, where
            :math:`k = \frac{1}{\text{in1\_features}}`
        bias:   the learnable bias of the module of shape :math:`(\text{out\_features})`.
                If :attr:`bias` is ``True``, the values are initialized from
                :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})`, where
                :math:`k = \frac{1}{\text{in1\_features}}`

    Examples::

        >>> m = nn.Bilinear(20, 30, 40)
        >>> input1 = torch.randn(128, 20)
        >>> input2 = torch.randn(128, 30)
        >>> output = m(input1, input2)
        >>> print(output.size())
        torch.Size([128, 40])
    )in1_featuresin2_featuresr%   rC   rD   r%   r&   TNr'   r   c                    sz   ||d}t    || _|| _|| _ttj|||ffi || _|r1ttj|fi || _	n| 
dd  |   d S r(   )r   r   rC   rD   r%   r   r,   r-   r&   r'   r.   r/   )r   rC   rD   r%   r'   r*   r+   r0   r   r   r   r      s   

zBilinear.__init__c                 C   sL   dt | jd }t| j| | | jd ur$t| j| | d S d S )Nr	   )r3   r4   r&   sizer   r5   r'   )r   r7   r   r   r   r/      s
   
zBilinear.reset_parametersinput1input2c                 C   s   t ||| j| jS r   )r8   Zbilinearr&   r'   )r   rF   rG   r   r   r   r      s   zBilinear.forwardc                 C   s   d | j| j| j| jd uS )Nz:in1_features={}, in2_features={}, out_features={}, bias={})formatrC   rD   r%   r'   r9   r   r   r   r:      s   zBilinear.extra_reprr;   r<   r=   r   r   r   r   r      s   
 %
r   c                       sb   e Zd ZU dZeZeed< eed< 		ddede	ddf fdd	Z
d fd
dZdddZ  ZS )r   a  A :class:`torch.nn.Linear` module where `in_features` is inferred.

    In this module, the `weight` and `bias` are of :class:`torch.nn.UninitializedParameter`
    class. They will be initialized after the first call to ``forward`` is done and the
    module will become a regular :class:`torch.nn.Linear` module. The ``in_features`` argument
    of the :class:`Linear` is inferred from the ``input.shape[-1]``.

    Check the :class:`torch.nn.modules.lazy.LazyModuleMixin` for further documentation
    on lazy modules and their limitations.

    Args:
        out_features: size of each output sample
        bias: If set to ``False``, the layer will not learn an additive bias.
            Default: ``True``

    Attributes:
        weight: the learnable weights of the module of shape
            :math:`(\text{out\_features}, \text{in\_features})`. The values are
            initialized from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})`, where
            :math:`k = \frac{1}{\text{in\_features}}`
        bias:   the learnable bias of the module of shape :math:`(\text{out\_features})`.
                If :attr:`bias` is ``True``, the values are initialized from
                :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where
                :math:`k = \frac{1}{\text{in\_features}}`


    r&   r'   TNr%   r   c                    sL   ||d}t  ddd tdi || _|| _|r$tdi || _d S d S )Nr)   r   Fr   )r   r   r   r&   r%   r'   )r   r%   r'   r*   r+   r0   r   r   r   r      s   
zLazyLinear.__init__c                    s(   |   s| jdkrt   d S d S d S )Nr   )has_uninitialized_paramsr$   r   r/   r9   r   r   r   r/      s   zLazyLinear.reset_parametersc                 C   s|   |   r<t * |jd | _| j| j| jf | jd ur&| j| jf | 	  W d    d S 1 s5w   Y  d S d S )N)
rI   r,   Zno_gradshaper$   r&   Zmaterializer%   r'   r/   r   r   r   r   initialize_parameters   s   


"z LazyLinear.initialize_parametersr;   r<   )r   r    r!   r"   r   Zcls_to_becomer   r?   r>   r@   r   r/   rL   r#   r   r   r   r   r      s   
 r   )r3   typingr   r,   r   Ztorch.nn.parameterr   r    r   r8   r   moduler
   Zlazyr   __all__r   r   rB   r   r   r   r   r   r   <module>   s    MJ