o
    i_O                     @   s  d dl Z d dlZd dlmZ d dlZd dlmZ dd Zdd ZdEdd	Z	d
d Z
dd ZdEddZdFdedededefddZdFdedededefddZ					dGdedededededeej defdd Zded!edefd"d#Zdedefd$d%Zdedefd&d'Zd(d) ZdHd+d,Zd-d. ZdIded/edefd0d1ZdIded/edefd2d3Zd4d5 Z	7dJdeded8ed9efd:d;Z	7dJdeded8ed9efd<d=ZdHd>d?ZdKdAdBZdCdD Z e eZ!e eZ"e eZ#e eZ$e eZ%e eZ&e eZ'e eZ(e eZ)e eZ*e eZ+dS )L    N)Tensor)Optionalc                 C   8   t   | ||W  d    S 1 sw   Y  d S N)torchno_graduniform_tensorab r   \/var/www/html/eduruby.in/lip-sync/lip-sync-env/lib/python3.10/site-packages/torch/nn/init.py_no_grad_uniform_      

$r   c                 C   r   r   )r   r   normal_r
   meanstdr   r   r   _no_grad_normal_   r   r   c           	      C   s   dd }||d|  k s||d|  krt jddd t D ||| | }||| | }| jd| d d| d |d |   | |td  | 	| | j
||d	 | W  d    S 1 sfw   Y  d S )
Nc                 S   s   dt | t d  d S )N      ?       @)matherfsqrt)xr   r   r   norm_cdf   s   z(_no_grad_trunc_normal_.<locals>.norm_cdf   zjmean is more than 2 std from [a, b] in nn.init.trunc_normal_. The distribution of values may be incorrect.
stacklevel   	generatorr   )minmax)warningswarnr   r   r   Zerfinv_mul_r   r   Zadd_Zclamp_)	r
   r   r   r   r   r"   r   lur   r   r   _no_grad_trunc_normal_   s    
 
$r*   c                 C   s6   t   | |W  d    S 1 sw   Y  d S r   )r   r   Zfill_r
   valr   r   r   _no_grad_fill_9   s   
$r-   c                 C   s4   t   |  W  d    S 1 sw   Y  d S r   )r   r   zero_r
   r   r   r   _no_grad_zero_>   s   
$r0   c                 C   s   g d}| |v s| dkrdS | dkrdS | dkrt dS | dkrM|d	u r(d
}nt|ts2t|ts7t|tr:|}ntd| dt dd|d   S | dkrSdS td|  )a  Return the recommended gain value for the given nonlinearity function.
    The values are as follows:

    ================= ====================================================
    nonlinearity      gain
    ================= ====================================================
    Linear / Identity :math:`1`
    Conv{1,2,3}D      :math:`1`
    Sigmoid           :math:`1`
    Tanh              :math:`\frac{5}{3}`
    ReLU              :math:`\sqrt{2}`
    Leaky Relu        :math:`\sqrt{\frac{2}{1 + \text{negative\_slope}^2}}`
    SELU              :math:`\frac{3}{4}`
    ================= ====================================================

    .. warning::
        In order to implement `Self-Normalizing Neural Networks`_ ,
        you should use ``nonlinearity='linear'`` instead of ``nonlinearity='selu'``.
        This gives the initial weights a variance of ``1 / N``,
        which is necessary to induce a stable fixed point in the forward pass.
        In contrast, the default gain for ``SELU`` sacrifices the normalization
        effect for more stable gradient flow in rectangular layers.

    Args:
        nonlinearity: the non-linear function (`nn.functional` name)
        param: optional parameter for the non-linear function

    Examples:
        >>> gain = nn.init.calculate_gain('leaky_relu', 0.2)  # leaky_relu with negative_slope=0.2

    .. _Self-Normalizing Neural Networks: https://papers.nips.cc/paper/2017/hash/5d44ee6f2c3f71b73125876103c8f6c4-Abstract.html
    )ZlinearZconv1dZconv2dZconv3dZconv_transpose1dZconv_transpose2dZconv_transpose3dZsigmoidr    tanhg?Zrelur   
leaky_reluN{Gz?znegative_slope z not a valid numberr   Zselug      ?zUnsupported nonlinearity )r   r   
isinstanceboolintfloat
ValueError)nonlinearityparamZ
linear_fnsZnegative_sloper   r   r   calculate_gainC   s"   !
r;           r   r
   r   r   returnc                 C   0   t j| rt jjt| f| ||dS t| ||S )ad  Fills the input Tensor with values drawn from the uniform
    distribution :math:`\mathcal{U}(a, b)`.

    Args:
        tensor: an n-dimensional `torch.Tensor`
        a: the lower bound of the uniform distribution
        b: the upper bound of the uniform distribution

    Examples:
        >>> w = torch.empty(3, 5)
        >>> nn.init.uniform_(w)
    r	   )r   	overrideshas_torch_function_variadichandle_torch_functionr   r   r	   r   r   r   r   z      r   r   r   c                 C   r>   )az  Fills the input Tensor with values drawn from the normal
    distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`.

    Args:
        tensor: an n-dimensional `torch.Tensor`
        mean: the mean of the normal distribution
        std: the standard deviation of the normal distribution

    Examples:
        >>> w = torch.empty(3, 5)
        >>> nn.init.normal_(w)
    r   )r   r?   r@   rA   r   r   r   r   r   r   r      rB   r          r   r"   c                 C   s   t | |||||dS )a  Fills the input Tensor with values drawn from a truncated
    normal distribution. The values are effectively drawn from the
    normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`
    with values outside :math:`[a, b]` redrawn until they are within
    the bounds. The method used for generating the random values works
    best when :math:`a \leq \text{mean} \leq b`.

    Args:
        tensor: an n-dimensional `torch.Tensor`
        mean: the mean of the normal distribution
        std: the standard deviation of the normal distribution
        a: the minimum cutoff value
        b: the maximum cutoff value

    Examples:
        >>> w = torch.empty(3, 5)
        >>> nn.init.trunc_normal_(w)
    r!   )r*   )r
   r   r   r   r   r"   r   r   r   trunc_normal_   s   rD   r,   c                 C   s,   t j| rt jjt| f| |dS t| |S )zFills the input Tensor with the value :math:`\text{val}`.

    Args:
        tensor: an n-dimensional `torch.Tensor`
        val: the value to fill the tensor with

    Examples:
        >>> w = torch.empty(3, 5)
        >>> nn.init.constant_(w, 0.3)
    r+   )r   r?   r@   rA   	constant_r-   r+   r   r   r   rE      s   
rE   c                 C   s
   t | dS )zFills the input Tensor with the scalar value `1`.

    Args:
        tensor: an n-dimensional `torch.Tensor`

    Examples:
        >>> w = torch.empty(3, 5)
        >>> nn.init.ones_(w)
    r   )r-   r/   r   r   r   ones_   s   

rF   c                 C   s   t | S )zFills the input Tensor with the scalar value `0`.

    Args:
        tensor: an n-dimensional `torch.Tensor`

    Examples:
        >>> w = torch.empty(3, 5)
        >>> nn.init.zeros_(w)
    )r0   r/   r   r   r   zeros_   s   
rG   c                 C   sX   |   dkr
tdt  tj| j| | jd W d   | S 1 s%w   Y  | S )a=  Fills the 2-dimensional input `Tensor` with the identity
    matrix. Preserves the identity of the inputs in `Linear` layers, where as
    many inputs are preserved as possible.

    Args:
        tensor: a 2-dimensional `torch.Tensor`

    Examples:
        >>> w = torch.empty(3, 5)
        >>> nn.init.eye_(w)
    r   ,Only tensors with 2 dimensions are supported)outrequires_gradN)
ndimensionr8   r   r   eyeshaperJ   r/   r   r   r   eye_   s   

rN   r    c                 C   s<  |   }|dvrtd|  }|d | dkrtd|d | }t||d }t g |   t|D ]U}t|D ]N}|dkrSd| || | || dd f< q<|dkrnd| || | || dd | dd f< q<d| || | || dd | dd | dd f< q<q6W d	   | S 1 sw   Y  | S )
aF  Fills the {3, 4, 5}-dimensional input `Tensor` with the Dirac
    delta function. Preserves the identity of the inputs in `Convolutional`
    layers, where as many input channels are preserved as possible. In case
    of groups>1, each group of channels preserves identity

    Args:
        tensor: a {3, 4, 5}-dimensional `torch.Tensor`
        groups (int, optional): number of groups in the conv layer (default: 1)
    Examples:
        >>> w = torch.empty(3, 16, 5, 5)
        >>> nn.init.dirac_(w)
        >>> w = torch.empty(3, 24, 5, 5)
        >>> nn.init.dirac_(w, 3)
    )         z5Only tensors with 3, 4, or 5 dimensions are supportedr   z!dim 0 must be divisible by groupsr    rO   r   rP   N)rK   r8   sizer#   r   r   r.   range)r
   groups
dimensionssizesZout_chans_per_grpZmin_dimgdr   r   r   dirac_   s:   
"
rY   c                 C   sp   |   }|dk rtd| d}| d}d}|   dkr,| jdd  D ]}||9 }q%|| }|| }||fS )Nr   zNFan in and fan out can not be computed for tensor with fewer than 2 dimensionsr    r   )dimr8   rR   rM   )r
   rU   Znum_input_fmapsZnum_output_fmapsZreceptive_field_sizesfan_infan_outr   r   r   _calculate_fan_in_and_fan_out#  s   


r^   gainc                 C   sB   t | \}}|tdt||   }td| }t| | |S )a  Fills the input `Tensor` with values according to the method
    described in `Understanding the difficulty of training deep feedforward
    neural networks` - Glorot, X. & Bengio, Y. (2010), using a uniform
    distribution. The resulting tensor will have values sampled from
    :math:`\mathcal{U}(-a, a)` where

    .. math::
        a = \text{gain} \times \sqrt{\frac{6}{\text{fan\_in} + \text{fan\_out}}}

    Also known as Glorot initialization.

    Args:
        tensor: an n-dimensional `torch.Tensor`
        gain: an optional scaling factor

    Examples:
        >>> w = torch.empty(3, 5)
        >>> nn.init.xavier_uniform_(w, gain=nn.init.calculate_gain('relu'))
    r         @)r^   r   r   r7   r   )r
   r_   r\   r]   r   r   r   r   r   xavier_uniform_6  s   ra   c                 C   s2   t | \}}|tdt||   }t| d|S )a  Fills the input `Tensor` with values according to the method
    described in `Understanding the difficulty of training deep feedforward
    neural networks` - Glorot, X. & Bengio, Y. (2010), using a normal
    distribution. The resulting tensor will have values sampled from
    :math:`\mathcal{N}(0, \text{std}^2)` where

    .. math::
        \text{std} = \text{gain} \times \sqrt{\frac{2}{\text{fan\_in} + \text{fan\_out}}}

    Also known as Glorot initialization.

    Args:
        tensor: an n-dimensional `torch.Tensor`
        gain: an optional scaling factor

    Examples:
        >>> w = torch.empty(3, 5)
        >>> nn.init.xavier_normal_(w)
    r   r<   )r^   r   r   r7   r   )r
   r_   r\   r]   r   r   r   r   xavier_normal_Q  s   rb   c                 C   sH   |  }ddg}||vrtd| d| t| \}}|dkr"|S |S )Nr\   r]   zMode z" not supported, please use one of )lowerr8   r^   )r
   modeZvalid_modesr\   r]   r   r   r   _calculate_correct_fank  s   re   r\   r2   rd   r9   c                 C   s   t j| rt jjt| f| |||dS d| jv rtd | S t| |}t	||}|t
| }t
d| }t   | | |W  d   S 1 sMw   Y  dS )a  Fills the input `Tensor` with values according to the method
    described in `Delving deep into rectifiers: Surpassing human-level
    performance on ImageNet classification` - He, K. et al. (2015), using a
    uniform distribution. The resulting tensor will have values sampled from
    :math:`\mathcal{U}(-\text{bound}, \text{bound})` where

    .. math::
        \text{bound} = \text{gain} \times \sqrt{\frac{3}{\text{fan\_mode}}}

    Also known as He initialization.

    Args:
        tensor: an n-dimensional `torch.Tensor`
        a: the negative slope of the rectifier used after this layer (only
            used with ``'leaky_relu'``)
        mode: either ``'fan_in'`` (default) or ``'fan_out'``. Choosing ``'fan_in'``
            preserves the magnitude of the variance of the weights in the
            forward pass. Choosing ``'fan_out'`` preserves the magnitudes in the
            backwards pass.
        nonlinearity: the non-linear function (`nn.functional` name),
            recommended to use only with ``'relu'`` or ``'leaky_relu'`` (default).

    Examples:
        >>> w = torch.empty(3, 5)
        >>> nn.init.kaiming_uniform_(w, mode='fan_in', nonlinearity='relu')
    )r
   r   rd   r9   r   ,Initializing zero-element tensors is a no-opr`   N)r   r?   r@   rA   kaiming_uniform_rM   r%   r&   re   r;   r   r   r   r   )r
   r   rd   r9   fanr_   r   boundr   r   r   rg   u  s&   




$rg   c                 C   sr   d| j v rtd | S t| |}t||}|t| }t  | 	d|W  d   S 1 s2w   Y  dS )a  Fills the input `Tensor` with values according to the method
    described in `Delving deep into rectifiers: Surpassing human-level
    performance on ImageNet classification` - He, K. et al. (2015), using a
    normal distribution. The resulting tensor will have values sampled from
    :math:`\mathcal{N}(0, \text{std}^2)` where

    .. math::
        \text{std} = \frac{\text{gain}}{\sqrt{\text{fan\_mode}}}

    Also known as He initialization.

    Args:
        tensor: an n-dimensional `torch.Tensor`
        a: the negative slope of the rectifier used after this layer (only
            used with ``'leaky_relu'``)
        mode: either ``'fan_in'`` (default) or ``'fan_out'``. Choosing ``'fan_in'``
            preserves the magnitude of the variance of the weights in the
            forward pass. Choosing ``'fan_out'`` preserves the magnitudes in the
            backwards pass.
        nonlinearity: the non-linear function (`nn.functional` name),
            recommended to use only with ``'relu'`` or ``'leaky_relu'`` (default).

    Examples:
        >>> w = torch.empty(3, 5)
        >>> nn.init.kaiming_normal_(w, mode='fan_out', nonlinearity='relu')
    r   rf   N)
rM   r%   r&   re   r;   r   r   r   r   r   )r
   r   rd   r9   rh   r_   r   r   r   r   kaiming_normal_  s   





$rj   c           	      C   s   |   dk r
td|  dkr| S | d}|  | }| ||dd}||k r/|  tj	|\}}t
|d}| }||9 }||k rM|  t  | || | | W d   | S 1 sjw   Y  | S )a]  Fills the input `Tensor` with a (semi) orthogonal matrix, as
    described in `Exact solutions to the nonlinear dynamics of learning in deep
    linear neural networks` - Saxe, A. et al. (2013). The input tensor must have
    at least 2 dimensions, and for tensors with more than 2 dimensions the
    trailing dimensions are flattened.

    Args:
        tensor: an n-dimensional `torch.Tensor`, where :math:`n \geq 2`
        gain: optional scaling factor

    Examples:
        >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_LAPACK)
        >>> w = torch.empty(3, 5)
        >>> nn.init.orthogonal_(w)
    r   z4Only tensors with 2 or more dimensions are supportedr   r    N)rK   r8   ZnumelrR   newr   Zt_r   ZlinalgZqrZdiagsignr   Zview_asZcopy_r'   )	r
   r_   rowscolsZ	flattenedqrrX   phr   r   r   orthogonal_  s,   


rr   r3   c           	      C   s   |   dkr
td| j\}}tt|| }t ' | d| t	|D ]}t
|}|d| }d| ||f< q'W d   | S 1 sFw   Y  | S )aN  Fills the 2D input `Tensor` as a sparse matrix, where the
    non-zero elements will be drawn from the normal distribution
    :math:`\mathcal{N}(0, 0.01)`, as described in `Deep learning via
    Hessian-free optimization` - Martens, J. (2010).

    Args:
        tensor: an n-dimensional `torch.Tensor`
        sparsity: The fraction of elements in each column to be set to zero
        std: the standard deviation of the normal distribution used to generate
            the non-zero values

    Examples:
        >>> w = torch.empty(3, 5)
        >>> nn.init.sparse_(w, sparsity=0.1)
    r   rH   r   N)rK   r8   rM   r6   r   ceilr   r   r   rS   Zrandperm)	r
   Zsparsityr   rm   rn   Z	num_zerosZcol_idxZrow_indicesZzero_indicesr   r   r   sparse_  s   



rt   c                    sF    j d d  fdd}d d d d|_|_ |S )Nc                     s*   t jd d ddd  | i |S )Nznn.init.z' is now deprecated in favor of nn.init..r   r   )r%   r&   )argskwargsmethnew_nameZold_namer   r   deprecated_init  s   z(_make_deprecate.<locals>.deprecated_initz
    z_(...)

    .. warning::
        This method is now deprecated in favor of :func:`torch.nn.init.z"`.

    See :func:`~torch.nn.init.z` for details.)__name____doc__)rz   r|   r   ry   r   _make_deprecate  s   
r   r   )r<   r   )r<   r   rC   r   N)r    )r   )r   r\   r2   )r3   ),r   r%   r   r   typingr   Z	_Optionalr   r   r*   r-   r0   r;   r7   r   r   	GeneratorrD   rE   rF   rG   rN   rY   r^   ra   rb   re   strrg   rj   rr   rt   r   uniformnormalZconstantrL   ZdiracZxavier_uniformZxavier_normalZkaiming_uniformZkaiming_normalZ
orthogonalsparser   r   r   r   <module>   s    
#
7

+
2

'
- 