o
    iMw                     @   s  d Z ddlmZmZ ddlZddlmZmZm	Z	m
Z
 ddlmZmZmZ ddlmZ ddlmZmZmZmZmZ dd	lmZ dd
lmZmZ ddlmZ ddlmZm Z m!Z! ddl"m#Z# ddl$m%Z%m&Z&m'Z' d.ddZ(d/ddZ)	d0ddZ*dddddddddd	dd Z+e!d!egeeddd"d#geeddd"d#geeddd"d#ge h d$geeddd"d#geeddd"d#ge h d%geeddd"d#geeddd"d#gd&gdegd'd(d)dddddddddd	d*d+Z,G d,d- d-eeeeZ-dS )1zLocally Linear Embedding    )IntegralRealN)eighqrsolvesvd)
csr_matrixeye
lil_matrix)eigsh   )BaseEstimatorClassNamePrefixFeaturesOutMixinTransformerMixin_fit_context_UnstableArchMixin)NearestNeighbors)check_arraycheck_random_state)_init_arpack_v0)Interval
StrOptionsvalidate_params)stable_cumsum)FLOAT_DTYPEScheck_is_fittedvalidate_dataMbP?c                 C   s   t | td} t |td}t |td}|j\}}| jd |ks J tj||f| jd}tj|| jd}t|D ]G\}}	||	 }
|
| |  }t	||j
}t|}|dkrY|| }n|}|jdd|d   |7  < t||dd}|t| ||ddf< q6|S )a  Compute barycenter weights of X from Y along the first axis

    We estimate the weights to assign to each point in Y[indices] to recover
    the point X[i]. The barycenter weights sum to 1.

    Parameters
    ----------
    X : array-like, shape (n_samples, n_dim)

    Y : array-like, shape (n_samples, n_dim)

    indices : array-like, shape (n_samples, n_dim)
            Indices of the points in Y used to compute the barycenter

    reg : float, default=1e-3
        Amount of regularization to add for the problem to be
        well-posed in the case of n_neighbors > n_dim

    Returns
    -------
    B : array-like, shape (n_samples, n_neighbors)

    Notes
    -----
    See developers note for more information.
    dtyper   N   pos)Zassume_a)r   r   intshapenpemptyr   ones	enumeratedotTtraceflatr   sum)XYindicesreg	n_samplesn_neighborsBviindACGr*   Rw r<   o/var/www/html/eduruby.in/lip-sync/lip-sync-env/lib/python3.10/site-packages/sklearn/manifold/_locally_linear.pybarycenter_weights   s&   


r>   c           	      C   s   t |d |d| }|j} |j}|j| ddddddf }t| | ||d}td|| d |}t|	 |	 |f||fdS )	a-  Computes the barycenter weighted graph of k-Neighbors for points in X

    Parameters
    ----------
    X : {array-like, NearestNeighbors}
        Sample data, shape = (n_samples, n_features), in the form of a
        numpy array or a NearestNeighbors object.

    n_neighbors : int
        Number of neighbors for each sample.

    reg : float, default=1e-3
        Amount of regularization when solving the least-squares
        problem. Only relevant if mode='barycenter'. If None, use the
        default.

    n_jobs : int or None, default=None
        The number of parallel jobs to run for neighbors search.
        ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
        ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
        for more details.

    Returns
    -------
    A : sparse matrix in CSR format, shape = [n_samples, n_samples]
        A[i, j] is assigned the weight of edge that connects i to j.

    See Also
    --------
    sklearn.neighbors.kneighbors_graph
    sklearn.neighbors.radius_neighbors_graph
    r    r2   n_jobsF)return_distanceNr0   r   r#   )
r   fit_fit_XZn_samples_fit_
kneighborsr>   r$   Zaranger   Zravel)	r-   r2   r0   r@   Zknnr1   r6   dataZindptrr<   r<   r=   barycenter_kneighbors_graphR   s   !rH   r    arpackư>d   c              
   C   s   |dkr| j d dkr|| dk rd}nd}|dkrYt| j d |}zt| || d|||d\}}	W n tyE }
 ztd	|
 |
d
}
~
ww |	d
d
|d
f t||d
 fS |dkrt| drf|  } t	| ||| d fdd\}}	t
t|}|	d
d
|f t|fS td| )a0  
    Find the null space of a matrix M.

    Parameters
    ----------
    M : {array, matrix, sparse matrix, LinearOperator}
        Input covariance matrix: should be symmetric positive semi-definite

    k : int
        Number of eigenvalues/vectors to return

    k_skip : int, default=1
        Number of low eigenvalues to skip.

    eigen_solver : {'auto', 'arpack', 'dense'}, default='arpack'
        auto : algorithm will attempt to choose the best method for input data
        arpack : use arnoldi iteration in shift-invert mode.
                    For this method, M may be a dense matrix, sparse matrix,
                    or general linear operator.
                    Warning: ARPACK can be unstable for some problems.  It is
                    best to try several random seeds in order to check results.
        dense  : use standard dense matrix operations for the eigenvalue
                    decomposition.  For this method, M must be an array
                    or matrix type.  This method should be avoided for
                    large problems.

    tol : float, default=1e-6
        Tolerance for 'arpack' method.
        Not used if eigen_solver=='dense'.

    max_iter : int, default=100
        Maximum number of iterations for 'arpack' method.
        Not used if eigen_solver=='dense'

    random_state : int, RandomState instance, default=None
        Determines the random number generator when ``solver`` == 'arpack'.
        Pass an int for reproducible results across multiple function calls.
        See :term:`Glossary <random_state>`.
    autor      
   rI   denseg        )sigmatolmaxiterv0a	  Error in determining null-space with ARPACK. Error message: '%s'. Note that eigen_solver='arpack' can fail when the weight matrix is singular or otherwise ill-behaved. In that case, eigen_solver='dense' is recommended. See online documentation for more information.Ntoarrayr    T)Zsubset_by_indexZoverwrite_azUnrecognized eigen_solver '%s')r#   r   r   RuntimeError
ValueErrorr$   r,   hasattrrT   r   Zargsortabs)Mkk_skipeigen_solverrQ   max_iterrandom_staterS   Zeigen_valuesZeigen_vectorseindexr<   r<   r=   
null_space|   s<   *&	

ra   rL   standard-C6?-q=)	r0   r\   rQ   r]   methodhessian_tolmodified_tolr^   r@   c          <   	   C   s  t |d |d}||  |j} | j\}}||krtd||kr)td||f |dk}|r1tntj}|dkrst||||d}|rTt	|jd|j
i| }|j| }n|j| |j |  }|jd d |jd	 d   d7  < n|d
kr||d  d }||| krtd|j| |d dd}|d d dd f }tj|d| | ftjd}d|d d d	f< |||ftjd}||k}t|D ]}| ||  }||d	8 }|rt|d	dd	 }nt||j}t|d d d d d df }|d d d |f |d d dd| f< d| }t|D ]+}|d d ||d f |d d ||f  |d d ||| | f< ||| 7 }qt|\}}|d d |d d f }|d	} d| tt| |k < ||  }t|| || \}!}"||!|"f  t||j7  < qŐn|dkr||k rtd|j| |d dd}|d d dd f }t|||f}#t||}$t||$g}%||k}|rt|D ]}| ||  | |  }&t|&dd\|#|< |%|< }'q|%dC }%n5t|D ]0}| ||  | |  }&t|&|&j}(t|(\})}*|)d d d |%|< |*d d d d df |#|< qd|%d }t|#d	ddt|}+|+d d d |$f  |%|d d d f    < |+d d |$d f  |d d d f   < t||f},t|D ]}t|#| |+| |,|< qa|,|,dd d d f  },|%d d |d f d|%d d d |f d }-t|-}.tj|td}/t |%d}0|0d d dd f |0d d d df  d }1t|D ]}t!|1|d d df |.|/|< q|/||$ 7 }/|||ftjd}t|D ]}|/| }2|#|d d ||2 d f }3tj"#|3d	t$|2 }4t%|2|4t|3jt| }5tj"#|5}6|6|	k r*|5d	9 }5n|5|6 }5|3dt&t|3|5|5  d|4 |,|d d d f   }7t|| || \}!}"||!|"f  t|7|7j7  < |7d}8|||| f  |88  < ||| |gf  |88  < |||f  |27  < qn|dkrC|j| |d dd}|d d dd f }|||ftjd}||k}t|D ]}| ||  }9|9|9d	8 }9|rt|9ddd	 }:nt|9|9j}t|d d d d d df }:t||d f}|:d d d |f |d d dd f< dt$| |d d d	f< t||j};t|| || \}!}"||!|"f  |;8  < ||| || f  tj|d7  < q|rJ|' }t(||d||||
dS )Nr    r?   z>output dimension must be less than or equal to input dimensionzFExpected n_neighbors < n_samples, but n_samples = %d, n_neighbors = %drO   rb   )r2   r0   r@   formatr   hessianr   z^for method='hessian', n_neighbors must be greater than [n_components * (n_components + 3) / 2]Fr2   rA   r   )Zfull_matricesmodifiedz1modified LLE requires n_neighbors >= n_componentsTr   ltsag      ?rC   )r[   r\   rQ   r]   r^   ))r   rD   rE   r#   rV   r
   r$   ZzerosrH   r	   rh   r)   rT   r+   rF   r%   Zfloat64rangemeanr   r(   r   r   r,   whererX   ZmeshgridminZ	transposer&   Zmedianr"   r   ZsearchsortedZlinalgZnormsqrtfullouterZtocsrra   )<r-   r2   n_componentsr0   r\   rQ   r]   re   rf   rg   r^   r@   ZnbrsNZd_inZM_sparseZM_container_constructorWrY   Zdp	neighborsZYiZuse_svdr5   ZGiUZCijrZ   Qr:   r;   SZnbrs_xZnbrs_yVZnevZevalsZX_nbrs_ZC_nbrsZevivitmpZw_regrhoetaZs_rangeZevals_cumsumZ	eta_rangeZs_iZViZalpha_ihZnorm_hZWiZWi_sum1Xir4   ZGiGiTr<   r<   r=   _locally_linear_embedding   s&  

&

(D
 




,(4

," 

6

&
$(r   z
array-likeleftclosed>   rI   rL   rO   >   ri   rb   rm   rl   r^   r-   r2   ru   r0   r\   rQ   r]   re   rf   rg   r^   r@   TZprefer_skip_nested_validationc                C   s    t | |||||||||	|
|dS )a  Perform a Locally Linear Embedding analysis on the data.

    Read more in the :ref:`User Guide <locally_linear_embedding>`.

    Parameters
    ----------
    X : {array-like, NearestNeighbors}
        Sample data, shape = (n_samples, n_features), in the form of a
        numpy array or a NearestNeighbors object.

    n_neighbors : int
        Number of neighbors to consider for each point.

    n_components : int
        Number of coordinates for the manifold.

    reg : float, default=1e-3
        Regularization constant, multiplies the trace of the local covariance
        matrix of the distances.

    eigen_solver : {'auto', 'arpack', 'dense'}, default='auto'
        auto : algorithm will attempt to choose the best method for input data

        arpack : use arnoldi iteration in shift-invert mode.
                    For this method, M may be a dense matrix, sparse matrix,
                    or general linear operator.
                    Warning: ARPACK can be unstable for some problems.  It is
                    best to try several random seeds in order to check results.

        dense  : use standard dense matrix operations for the eigenvalue
                    decomposition.  For this method, M must be an array
                    or matrix type.  This method should be avoided for
                    large problems.

    tol : float, default=1e-6
        Tolerance for 'arpack' method
        Not used if eigen_solver=='dense'.

    max_iter : int, default=100
        Maximum number of iterations for the arpack solver.

    method : {'standard', 'hessian', 'modified', 'ltsa'}, default='standard'
        standard : use the standard locally linear embedding algorithm.
                   see reference [1]_
        hessian  : use the Hessian eigenmap method.  This method requires
                   n_neighbors > n_components * (1 + (n_components + 1) / 2.
                   see reference [2]_
        modified : use the modified locally linear embedding algorithm.
                   see reference [3]_
        ltsa     : use local tangent space alignment algorithm
                   see reference [4]_

    hessian_tol : float, default=1e-4
        Tolerance for Hessian eigenmapping method.
        Only used if method == 'hessian'.

    modified_tol : float, default=1e-12
        Tolerance for modified LLE method.
        Only used if method == 'modified'.

    random_state : int, RandomState instance, default=None
        Determines the random number generator when ``solver`` == 'arpack'.
        Pass an int for reproducible results across multiple function calls.
        See :term:`Glossary <random_state>`.

    n_jobs : int or None, default=None
        The number of parallel jobs to run for neighbors search.
        ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
        ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
        for more details.

    Returns
    -------
    Y : ndarray of shape (n_samples, n_components)
        Embedding vectors.

    squared_error : float
        Reconstruction error for the embedding vectors. Equivalent to
        ``norm(Y - W Y, 'fro')**2``, where W are the reconstruction weights.

    References
    ----------

    .. [1] Roweis, S. & Saul, L. Nonlinear dimensionality reduction
        by locally linear embedding.  Science 290:2323 (2000).
    .. [2] Donoho, D. & Grimes, C. Hessian eigenmaps: Locally
        linear embedding techniques for high-dimensional data.
        Proc Natl Acad Sci U S A.  100:5591 (2003).
    .. [3] `Zhang, Z. & Wang, J. MLLE: Modified Locally Linear
        Embedding Using Multiple Weights.
        <https://citeseerx.ist.psu.edu/doc_view/pid/0b060fdbd92cbcc66b383bcaa9ba5e5e624d7ee3>`_
    .. [4] Zhang, Z. & Zha, H. Principal manifolds and nonlinear
        dimensionality reduction via tangent space alignment.
        Journal of Shanghai Univ.  8:406 (2004)

    Examples
    --------
    >>> from sklearn.datasets import load_digits
    >>> from sklearn.manifold import locally_linear_embedding
    >>> X, _ = load_digits(return_X_y=True)
    >>> X.shape
    (1797, 64)
    >>> embedding, _ = locally_linear_embedding(X[:100],n_neighbors=5, n_components=2)
    >>> embedding.shape
    (100, 2)
    r   )r   r   r<   r<   r=   locally_linear_embedding  s    r   c                   @   s  e Zd ZU dZeeddddgeeddddgeeddddgeh dgeeddddgeeddddgeh dgeeddddgeeddddgeh d	gd
gdegdZe	e
d< dddddddddddddddZdd Zeddd"ddZeddd"ddZd d! ZdS )#LocallyLinearEmbeddinga  Locally Linear Embedding.

    Read more in the :ref:`User Guide <locally_linear_embedding>`.

    Parameters
    ----------
    n_neighbors : int, default=5
        Number of neighbors to consider for each point.

    n_components : int, default=2
        Number of coordinates for the manifold.

    reg : float, default=1e-3
        Regularization constant, multiplies the trace of the local covariance
        matrix of the distances.

    eigen_solver : {'auto', 'arpack', 'dense'}, default='auto'
        The solver used to compute the eigenvectors. The available options are:

        - `'auto'` : algorithm will attempt to choose the best method for input
          data.
        - `'arpack'` : use arnoldi iteration in shift-invert mode. For this
          method, M may be a dense matrix, sparse matrix, or general linear
          operator.
        - `'dense'`  : use standard dense matrix operations for the eigenvalue
          decomposition. For this method, M must be an array or matrix type.
          This method should be avoided for large problems.

        .. warning::
           ARPACK can be unstable for some problems.  It is best to try several
           random seeds in order to check results.

    tol : float, default=1e-6
        Tolerance for 'arpack' method
        Not used if eigen_solver=='dense'.

    max_iter : int, default=100
        Maximum number of iterations for the arpack solver.
        Not used if eigen_solver=='dense'.

    method : {'standard', 'hessian', 'modified', 'ltsa'}, default='standard'
        - `standard`: use the standard locally linear embedding algorithm. see
          reference [1]_
        - `hessian`: use the Hessian eigenmap method. This method requires
          ``n_neighbors > n_components * (1 + (n_components + 1) / 2``. see
          reference [2]_
        - `modified`: use the modified locally linear embedding algorithm.
          see reference [3]_
        - `ltsa`: use local tangent space alignment algorithm. see
          reference [4]_

    hessian_tol : float, default=1e-4
        Tolerance for Hessian eigenmapping method.
        Only used if ``method == 'hessian'``.

    modified_tol : float, default=1e-12
        Tolerance for modified LLE method.
        Only used if ``method == 'modified'``.

    neighbors_algorithm : {'auto', 'brute', 'kd_tree', 'ball_tree'},                           default='auto'
        Algorithm to use for nearest neighbors search, passed to
        :class:`~sklearn.neighbors.NearestNeighbors` instance.

    random_state : int, RandomState instance, default=None
        Determines the random number generator when
        ``eigen_solver`` == 'arpack'. Pass an int for reproducible results
        across multiple function calls. See :term:`Glossary <random_state>`.

    n_jobs : int or None, default=None
        The number of parallel jobs to run.
        ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
        ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
        for more details.

    Attributes
    ----------
    embedding_ : array-like, shape [n_samples, n_components]
        Stores the embedding vectors

    reconstruction_error_ : float
        Reconstruction error associated with `embedding_`

    n_features_in_ : int
        Number of features seen during :term:`fit`.

        .. versionadded:: 0.24

    feature_names_in_ : ndarray of shape (`n_features_in_`,)
        Names of features seen during :term:`fit`. Defined only when `X`
        has feature names that are all strings.

        .. versionadded:: 1.0

    nbrs_ : NearestNeighbors object
        Stores nearest neighbors instance, including BallTree or KDtree
        if applicable.

    See Also
    --------
    SpectralEmbedding : Spectral embedding for non-linear dimensionality
        reduction.
    TSNE : Distributed Stochastic Neighbor Embedding.

    References
    ----------

    .. [1] Roweis, S. & Saul, L. Nonlinear dimensionality reduction
        by locally linear embedding.  Science 290:2323 (2000).
    .. [2] Donoho, D. & Grimes, C. Hessian eigenmaps: Locally
        linear embedding techniques for high-dimensional data.
        Proc Natl Acad Sci U S A.  100:5591 (2003).
    .. [3] `Zhang, Z. & Wang, J. MLLE: Modified Locally Linear
        Embedding Using Multiple Weights.
        <https://citeseerx.ist.psu.edu/doc_view/pid/0b060fdbd92cbcc66b383bcaa9ba5e5e624d7ee3>`_
    .. [4] Zhang, Z. & Zha, H. Principal manifolds and nonlinear
        dimensionality reduction via tangent space alignment.
        Journal of Shanghai Univ.  8:406 (2004)

    Examples
    --------
    >>> from sklearn.datasets import load_digits
    >>> from sklearn.manifold import LocallyLinearEmbedding
    >>> X, _ = load_digits(return_X_y=True)
    >>> X.shape
    (1797, 64)
    >>> embedding = LocallyLinearEmbedding(n_components=2)
    >>> X_transformed = embedding.fit_transform(X[:100])
    >>> X_transformed.shape
    (100, 2)
    r    Nr   r   r   >   rI   rL   rO   >   ri   rb   rm   rl   >   Z	ball_treeZbruterL   Zkd_treer^   )r2   ru   r0   r\   rQ   r]   re   rf   rg   neighbors_algorithmr^   r@   _parameter_constraints   r   r   rL   rJ   rK   rb   rc   rd   c                C   sL   || _ || _|| _|| _|| _|| _|| _|| _|	| _|| _	|
| _
|| _d S N)r2   ru   r0   r\   rQ   r]   re   rf   rg   r^   r   r@   )selfr2   ru   r0   r\   rQ   r]   re   rf   rg   r   r^   r@   r<   r<   r=   __init__  s   
zLocallyLinearEmbedding.__init__c                 C   s   t | j| j| jd| _t| j}t| |td}| j	| t
| j| j| j| j| j| j| j| j| j|| j| jd\| _| _| jjd | _d S )N)r2   	algorithmr@   r   )r-   r2   ru   r\   rQ   r]   re   rf   rg   r^   r0   r@   r    )r   r2   r   r@   nbrs_r   r^   r   floatrD   r   ru   r\   rQ   r]   re   rf   rg   r0   
embedding_Zreconstruction_error_r#   Z_n_features_out)r   r-   r^   r<   r<   r=   _fit_transform  s.   
z%LocallyLinearEmbedding._fit_transformTr   c                 C   s   |  | | S )ay  Compute the embedding vectors for data X.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Training set.

        y : Ignored
            Not used, present here for API consistency by convention.

        Returns
        -------
        self : object
            Fitted `LocallyLinearEmbedding` class instance.
        )r   r   r-   yr<   r<   r=   rD   *  s   
zLocallyLinearEmbedding.fitc                 C   s   |  | | jS )a  Compute the embedding vectors for data X and transform X.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Training set.

        y : Ignored
            Not used, present here for API consistency by convention.

        Returns
        -------
        X_new : array-like, shape (n_samples, n_components)
            Returns the instance itself.
        )r   r   r   r<   r<   r=   fit_transform>  s   
z$LocallyLinearEmbedding.fit_transformc                 C   s   t |  t| |dd}| jj|| jdd}t|| jj|| jd}t	|j
d | jf}t|j
d D ]}t| j||  j|| ||< q2|S )a  
        Transform new points into embedding space.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Training set.

        Returns
        -------
        X_new : ndarray of shape (n_samples, n_components)
            Returns the instance itself.

        Notes
        -----
        Because of scaling performed by this method, it is discouraged to use
        it together with methods that are not scale-invariant (like SVMs).
        F)resetrj   rB   r   )r   r   r   rF   r2   r>   rE   r0   r$   r%   r#   ru   rn   r(   r   r)   )r   r-   r6   weightsZX_newr5   r<   r<   r=   	transformR  s   "z LocallyLinearEmbedding.transformr   )__name__
__module____qualname____doc__r   r   r   r   r   dict__annotations__r   r   r   rD   r   r   r<   r<   r<   r=   r   Z  sF   
  r   )r   )r   N)r    rI   rJ   rK   N).r   numbersr   r   numpyr$   Zscipy.linalgr   r   r   r   Zscipy.sparser   r	   r
   Zscipy.sparse.linalgr   baser   r   r   r   r   rx   r   utilsr   r   Zutils._arpackr   Zutils._param_validationr   r   r   Zutils.extmathr   Zutils.validationr   r   r   r>   rH   ra   r   r   r   r<   r<   r<   r=   <module>   sz    

6+
Q y 

