o
    il                  
   @   sJ  d Z ddlZddlmZmZ ddlmZmZ ddlZ	ddl
mZmZ ddlmZmZmZmZmZmZ ddlmZ dd	lmZmZ dd
lmZmZ ddlmZ ddlmZm Z m!Z! g dZ"dd Z#	d(ddZ$dd Z%d)ddZ&dd Z'G dd deeeeeedZ(G d d! d!e(Z)G d"d# d#e(Z*G d$d% d%e(Z+G d&d' d'eeeZ,dS )*zG
The :mod:`sklearn.pls` module implements Partial Least Squares (PLS).
    N)ABCMetaabstractmethod)IntegralReal)pinvsvd   )BaseEstimatorClassNamePrefixFeaturesOutMixinMultiOutputMixinRegressorMixinTransformerMixin_fit_context)ConvergenceWarning)check_arraycheck_consistent_length)Interval
StrOptions)svd_flip)FLOAT_DTYPEScheck_is_fittedvalidate_data)PLSSVDPLSCanonicalPLSRegressionc              
   C   s   t | ddd\}}}|jj }ddd}t|||  t|j }t||k}|d d d |f }||d |  }t	t
t||d | S )NF)full_matricescheck_finiteg     @@g    .A)fd)r   dtypecharlowernpmaxfinfoepssumZ	transpose	conjugatedot)ausZvhtfactorZcondZrank r.   o/var/www/html/eduruby.in/lip-sync/lip-sync-env/lib/python3.10/site-packages/sklearn/cross_decomposition/_pls.py
_pinv2_old    s   
 r0   A  ư>Fc              
      s  t | jj zt fdd|jD }W n ty& } ztd|d}~ww d}|dkr6t| t|}	}
t|D ]z}|dkrGt 	|	|}nt 	| j|t 	|| }|t 
t 	||   }t 	| |}|dkrrt 	|
|}nt 	|j|t 	|j| }|r|t 
t 	||   }t 	||t 	||   }|| }t 	|||k s|jd dkr n|}q:|d }||krtdt |||fS )	a?  Return the first left and right singular vectors of X'y.

    Provides an alternative to the svd(X'y) and uses the power method instead.
    With norm_y_weights to True and in mode A, this corresponds to the
    algorithm section 11.3 of the Wegelin's review, except this starts at the
    "update saliences" part.
    c                 3   s(    | ]}t t | kr|V  qd S N)r"   anyabs).0colr%   r.   r/   	<genexpr>?   s   & z;_get_first_singular_vectors_power_method.<locals>.<genexpr>y residual is constantNd   B   z$Maximum number of iterations reached)r"   r$   r   r%   nextTStopIterationr0   ranger(   sqrtshapewarningswarnr   )Xymodemax_itertolnorm_y_weightsZy_scoreeZx_weights_oldZX_pinvZy_pinvi	x_weightsZx_score	y_weightsZx_weights_diffZn_iterr.   r9   r/   (_get_first_singular_vectors_power_method2   s<   

rQ   c                 C   s@   t | j|}t|dd\}}}|dddf |dddf fS )zbReturn the first left and right singular vectors of X'y.

    Here the whole SVD is computed.
    Fr   Nr   )r"   r(   r@   r   )rG   rH   CU_Vtr.   r.   r/   _get_first_singular_vectors_svdm   s    rW   Tc                 C   s   | j dd}| |8 } |j dd}||8 }|r9| jddd}d||dk< | | } |jddd}d||dk< || }nt| jd }t|jd }| |||||fS )z{Center X, y and scale if the scale parameter==True

    Returns
    -------
        X, y, x_mean, y_mean, x_std, y_std
    r   axisr>   )rY   Zddofg      ?        )meanZstdr"   ZonesrD   )rG   rH   scaleZx_meanZy_meanZx_stdZy_stdr.   r.   r/   _center_scale_xyw   s   
r]   c                 C   s2   t t | }t | | }| |9 } ||9 }dS )z7Same as svd_flip but works on 1d arrays, and is inplaceN)r"   Zargmaxr6   sign)r*   vZbiggest_abs_val_idxr^   r.   r.   r/   _svd_flip_1d   s   r`   c                       s   e Zd ZU dZeeddddgdgeddhged	d
hgeddhgeeddddgeeddddgdgdZe	e
d< e	d$ddd	dddddddZedddd Zd%ddZd&ddZd'ddZd&d d!Z fd"d#Z  ZS )(_PLSa  Partial Least Squares (PLS)

    This class implements the generic PLS algorithm.

    Main ref: Wegelin, a survey of Partial Least Squares (PLS) methods,
    with emphasis on the two-block case
    https://stat.uw.edu/sites/default/files/files/reports/2000/tr371.pdf
    r>   Nleftclosedboolean
regression	canonicalr1   r=   r   nipalsr   n_componentsr\   deflation_moderI   	algorithmrJ   rK   copy_parameter_constraintsr   Tr2   r3   )r\   rk   rI   rl   rJ   rK   rm   c          	      C   s4   || _ || _|| _|| _|| _|| _|| _|| _d S r4   )rj   rk   rI   r\   rl   rJ   rK   rm   )	selfrj   r\   rk   rI   rl   rJ   rK   rm   r.   r.   r/   __init__   s   
z_PLS.__init__Zprefer_skip_nested_validationc                 C   s  t || t| |tjd| jdd}t|dtjd| jdd}|jdkr,d| _|dd}nd| _|j	d	 }|j	d }|j	d }| j
}| jd
krKt||nt|||}||kr`td| d| d| jdk| _| j}t||| j\}	}
| _| _| _| _t||f| _t||f| _t||f| _t||f| _t||f| _t||f| _g | _t|
jj}t |D ]}| j!dkrtj"t#|
d| k d	d}d|
dd|f< zt$|	|
| j%| j&| j'|d\}}}W n# t(y } zt)|dkr t*+d|  W Y d}~ nd}~ww | j,| n| j!dkr!t-|	|
\}}t.|| t/|	|}|r2d}nt/||}t/|
|| }t/||	t/|| }|	t0||8 }	| jdkrnt/||
t/|| }|
t0||8 }
| jd
krt/||
t/|| }|
t0||8 }
|| jdd|f< || jdd|f< || jdd|f< || jdd|f< || jdd|f< || jdd|f< qt/| jt1t/| jj2| jdd| _3t/| jt1t/| jj2| jdd| _4t/| j3| jj2| _5| j5| j j2| j | _5| j| _6| j3j	d | _7| S )  Fit model to data.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Training vectors, where `n_samples` is the number of samples and
            `n_features` is the number of predictors.

        y : array-like of shape (n_samples,) or (n_samples, n_targets)
            Target vectors, where `n_samples` is the number of samples and
            `n_targets` is the number of response variables.

        Returns
        -------
        self : object
            Fitted model.
        Tr   r   force_writeablerm   Zensure_min_samplesrH   F
input_namer   rt   rm   	ensure_2dr>   r   rf   `n_components` upper bound is . Got   instead. Reduce `n_components`.rg   rh   
   rX   rZ   N)rI   rJ   rK   rL   r;   z$y residual is constant at iteration r   )r   )8r   r   r"   float64rm   r   ndim_predict_1dreshaperD   rj   rk   min
ValueErrorZ_norm_y_weightsr]   r\   _x_mean_y_mean_x_std_y_stdZzeros
x_weights_
y_weights_	_x_scores	_y_scoresx_loadings_y_loadings_n_iter_r$   r   r%   rB   rl   allr6   rQ   rI   rJ   rK   rA   strrE   rF   appendrW   r`   r(   outerr   r@   x_rotations_y_rotations_coef_
intercept__n_features_out)ro   rG   rH   npqrj   rank_upper_boundrL   ZXkZykZy_epskZyk_maskrO   rP   r   rM   x_scoresZy_ssy_scoresZ
x_loadingsZ
y_loadingsr.   r.   r/   fit   s   




	
	z_PLS.fitc                 C   s   t |  t| ||tdd}|| j8 }|| j }t|| j}|durKt|dd|td}|j	dkr6|
dd}|| j8 }|| j }t|| j}||fS |S )a.  Apply the dimension reduction.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Samples to transform.

        y : array-like of shape (n_samples, n_targets), default=None
            Target vectors.

        copy : bool, default=True
            Whether to copy `X` and `y`, or perform in-place normalization.

        Returns
        -------
        x_scores, y_scores : array-like or tuple of array-like
            Return `x_scores` if `y` is not given, `(x_scores, y_scores)` otherwise.
        Frm   r   resetNrH   )rv   rw   rm   r   r>   rx   )r   r   r   r   r   r"   r(   r   r   r~   r   r   r   r   )ro   rG   rH   rm   r   r   r.   r.   r/   	transformp  s    





z_PLS.transformc                 C   s   t |  t|dtd}t|| jj}|| j9 }|| j7 }|dur>t|dtd}t|| j	j}|| j
9 }|| j7 }||fS |S )ak  Transform data back to its original space.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_components)
            New data, where `n_samples` is the number of samples
            and `n_components` is the number of pls components.

        y : array-like of shape (n_samples,) or (n_samples, n_components)
            New target, where `n_samples` is the number of samples
            and `n_components` is the number of pls components.

        Returns
        -------
        X_original : ndarray of shape (n_samples, n_features)
            Return the reconstructed `X` data.

        y_original : ndarray of shape (n_samples, n_targets)
            Return the reconstructed `X` target. Only returned when `y` is given.

        Notes
        -----
        This transformation will only be exact if `n_components=n_features`.
        rG   )rv   r   NrH   )r   r   r   r"   matmulr   r@   r   r   r   r   r   )ro   rG   rH   ZX_reconstructedZy_reconstructedr.   r.   r/   inverse_transform  s   



z_PLS.inverse_transformc                 C   sH   t |  t| ||tdd}|| j8 }|| jj | j }| jr"| S |S )aL  Predict targets of given samples.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Samples.

        copy : bool, default=True
            Whether to copy `X` or perform in-place normalization.

        Returns
        -------
        y_pred : ndarray of shape (n_samples,) or (n_samples, n_targets)
            Returns predicted values.

        Notes
        -----
        This call requires the estimation of a matrix of shape
        `(n_features, n_targets)`, which may be an issue in high dimensional
        space.
        Fr   )	r   r   r   r   r   r@   r   r   Zravel)ro   rG   rm   Zy_predr.   r.   r/   predict  s
   
z_PLS.predictc                 C      |  ||||S )a  Learn and apply the dimension reduction on the train data.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Training vectors, where `n_samples` is the number of samples and
            `n_features` is the number of predictors.

        y : array-like of shape (n_samples, n_targets), default=None
            Target vectors, where `n_samples` is the number of samples and
            `n_targets` is the number of response variables.

        Returns
        -------
        self : ndarray of shape (n_samples, n_components)
            Return `x_scores` if `y` is not given, `(x_scores, y_scores)` otherwise.
        r   r   ro   rG   rH   r.   r.   r/   fit_transform     z_PLS.fit_transformc                    s   t   }d|j_d|j_|S )NTF)super__sklearn_tags__Zregressor_tagsZ
poor_scoreZtarget_tagsrequired)ro   tags	__class__r.   r/   r     s   
z_PLS.__sklearn_tags__r   )NTr4   T)__name__
__module____qualname____doc__r   r   r   r   rn   dict__annotations__r   rp   r   r   r   r   r   r   r   __classcell__r.   r.   r   r/   ra      s<   
 

 
#
'
,
ra   )	metaclassc                       sd   e Zd ZU dZi ejZeed< dD ]Ze	e q	dddddd fd	d
Z
 fddZ  ZS )r   a  PLS regression.

    PLSRegression is also known as PLS2 or PLS1, depending on the number of
    targets.

    For a comparison between other cross decomposition algorithms, see
    :ref:`sphx_glr_auto_examples_cross_decomposition_plot_compare_cross_decomposition.py`.

    Read more in the :ref:`User Guide <cross_decomposition>`.

    .. versionadded:: 0.8

    Parameters
    ----------
    n_components : int, default=2
        Number of components to keep. Should be in `[1, n_features]`.

    scale : bool, default=True
        Whether to scale `X` and `y`.

    max_iter : int, default=500
        The maximum number of iterations of the power method when
        `algorithm='nipals'`. Ignored otherwise.

    tol : float, default=1e-06
        The tolerance used as convergence criteria in the power method: the
        algorithm stops whenever the squared norm of `u_i - u_{i-1}` is less
        than `tol`, where `u` corresponds to the left singular vector.

    copy : bool, default=True
        Whether to copy `X` and `y` in :term:`fit` before applying centering,
        and potentially scaling. If `False`, these operations will be done
        inplace, modifying both arrays.

    Attributes
    ----------
    x_weights_ : ndarray of shape (n_features, n_components)
        The left singular vectors of the cross-covariance matrices of each
        iteration.

    y_weights_ : ndarray of shape (n_targets, n_components)
        The right singular vectors of the cross-covariance matrices of each
        iteration.

    x_loadings_ : ndarray of shape (n_features, n_components)
        The loadings of `X`.

    y_loadings_ : ndarray of shape (n_targets, n_components)
        The loadings of `y`.

    x_scores_ : ndarray of shape (n_samples, n_components)
        The transformed training samples.

    y_scores_ : ndarray of shape (n_samples, n_components)
        The transformed training targets.

    x_rotations_ : ndarray of shape (n_features, n_components)
        The projection matrix used to transform `X`.

    y_rotations_ : ndarray of shape (n_targets, n_components)
        The projection matrix used to transform `y`.

    coef_ : ndarray of shape (n_target, n_features)
        The coefficients of the linear model such that `y` is approximated as
        `y = X @ coef_.T + intercept_`.

    intercept_ : ndarray of shape (n_targets,)
        The intercepts of the linear model such that `y` is approximated as
        `y = X @ coef_.T + intercept_`.

        .. versionadded:: 1.1

    n_iter_ : list of shape (n_components,)
        Number of iterations of the power method, for each
        component.

    n_features_in_ : int
        Number of features seen during :term:`fit`.

    feature_names_in_ : ndarray of shape (`n_features_in_`,)
        Names of features seen during :term:`fit`. Defined only when `X`
        has feature names that are all strings.

        .. versionadded:: 1.0

    See Also
    --------
    PLSCanonical : Partial Least Squares transformer and regressor.

    Examples
    --------
    >>> from sklearn.cross_decomposition import PLSRegression
    >>> X = [[0., 0., 1.], [1.,0.,0.], [2.,2.,2.], [2.,5.,4.]]
    >>> y = [[0.1, -0.2], [0.9, 1.1], [6.2, 5.9], [11.9, 12.3]]
    >>> pls2 = PLSRegression(n_components=2)
    >>> pls2.fit(X, y)
    PLSRegression()
    >>> y_pred = pls2.predict(X)

    For a comparison between PLS Regression and :class:`~sklearn.decomposition.PCA`, see
    :ref:`sphx_glr_auto_examples_cross_decomposition_plot_pcr_vs_pls.py`.
    rn   rk   rI   rl   r   Tr2   r3   r\   rJ   rK   rm   c             
          t  j||ddd|||d d S )Nrf   r1   rh   ri   r   rp   ro   rj   r\   rJ   rK   rm   r   r.   r/   rp   m     
zPLSRegression.__init__c                    s"   t  || | j| _| j| _| S )rr   )r   r   r   Z	x_scores_r   Z	y_scores_r   r   r.   r/   r   {  s   zPLSRegression.fitr   )r   r   r   r   ra   rn   r   r   parampoprp   r   r   r.   r.   r   r/   r     s   
 g	r   c                       sZ   e Zd ZU dZi ejZeed< dD ]Ze	e q	ddddddd	 fd
dZ
  ZS )r   a^  Partial Least Squares transformer and regressor.

    For a comparison between other cross decomposition algorithms, see
    :ref:`sphx_glr_auto_examples_cross_decomposition_plot_compare_cross_decomposition.py`.

    Read more in the :ref:`User Guide <cross_decomposition>`.

    .. versionadded:: 0.8

    Parameters
    ----------
    n_components : int, default=2
        Number of components to keep. Should be in `[1, min(n_samples,
        n_features, n_targets)]`.

    scale : bool, default=True
        Whether to scale `X` and `y`.

    algorithm : {'nipals', 'svd'}, default='nipals'
        The algorithm used to estimate the first singular vectors of the
        cross-covariance matrix. 'nipals' uses the power method while 'svd'
        will compute the whole SVD.

    max_iter : int, default=500
        The maximum number of iterations of the power method when
        `algorithm='nipals'`. Ignored otherwise.

    tol : float, default=1e-06
        The tolerance used as convergence criteria in the power method: the
        algorithm stops whenever the squared norm of `u_i - u_{i-1}` is less
        than `tol`, where `u` corresponds to the left singular vector.

    copy : bool, default=True
        Whether to copy `X` and `y` in fit before applying centering, and
        potentially scaling. If False, these operations will be done inplace,
        modifying both arrays.

    Attributes
    ----------
    x_weights_ : ndarray of shape (n_features, n_components)
        The left singular vectors of the cross-covariance matrices of each
        iteration.

    y_weights_ : ndarray of shape (n_targets, n_components)
        The right singular vectors of the cross-covariance matrices of each
        iteration.

    x_loadings_ : ndarray of shape (n_features, n_components)
        The loadings of `X`.

    y_loadings_ : ndarray of shape (n_targets, n_components)
        The loadings of `y`.

    x_rotations_ : ndarray of shape (n_features, n_components)
        The projection matrix used to transform `X`.

    y_rotations_ : ndarray of shape (n_targets, n_components)
        The projection matrix used to transform `y`.

    coef_ : ndarray of shape (n_targets, n_features)
        The coefficients of the linear model such that `y` is approximated as
        `y = X @ coef_.T + intercept_`.

    intercept_ : ndarray of shape (n_targets,)
        The intercepts of the linear model such that `y` is approximated as
        `y = X @ coef_.T + intercept_`.

        .. versionadded:: 1.1

    n_iter_ : list of shape (n_components,)
        Number of iterations of the power method, for each
        component. Empty if `algorithm='svd'`.

    n_features_in_ : int
        Number of features seen during :term:`fit`.

    feature_names_in_ : ndarray of shape (`n_features_in_`,)
        Names of features seen during :term:`fit`. Defined only when `X`
        has feature names that are all strings.

        .. versionadded:: 1.0

    See Also
    --------
    CCA : Canonical Correlation Analysis.
    PLSSVD : Partial Least Square SVD.

    Examples
    --------
    >>> from sklearn.cross_decomposition import PLSCanonical
    >>> X = [[0., 0., 1.], [1.,0.,0.], [2.,2.,2.], [2.,5.,4.]]
    >>> y = [[0.1, -0.2], [0.9, 1.1], [6.2, 5.9], [11.9, 12.3]]
    >>> plsca = PLSCanonical(n_components=2)
    >>> plsca.fit(X, y)
    PLSCanonical()
    >>> X_c, y_c = plsca.transform(X, y)
    rn   )rk   rI   r   Trh   r2   r3   )r\   rl   rJ   rK   rm   c             
      s    t  j||dd||||d d S )Nrg   r1   ri   r   )ro   rj   r\   rl   rJ   rK   rm   r   r.   r/   rp     s   

zPLSCanonical.__init__r   r   r   r   r   ra   rn   r   r   r   r   rp   r   r.   r.   r   r/   r     s   
 br   c                       sX   e Zd ZU dZi ejZeed< dD ]Ze	e q	dddddd fd	d
Z
  ZS )CCAa  Canonical Correlation Analysis, also known as "Mode B" PLS.

    For a comparison between other cross decomposition algorithms, see
    :ref:`sphx_glr_auto_examples_cross_decomposition_plot_compare_cross_decomposition.py`.

    Read more in the :ref:`User Guide <cross_decomposition>`.

    Parameters
    ----------
    n_components : int, default=2
        Number of components to keep. Should be in `[1, min(n_samples,
        n_features, n_targets)]`.

    scale : bool, default=True
        Whether to scale `X` and `y`.

    max_iter : int, default=500
        The maximum number of iterations of the power method.

    tol : float, default=1e-06
        The tolerance used as convergence criteria in the power method: the
        algorithm stops whenever the squared norm of `u_i - u_{i-1}` is less
        than `tol`, where `u` corresponds to the left singular vector.

    copy : bool, default=True
        Whether to copy `X` and `y` in fit before applying centering, and
        potentially scaling. If False, these operations will be done inplace,
        modifying both arrays.

    Attributes
    ----------
    x_weights_ : ndarray of shape (n_features, n_components)
        The left singular vectors of the cross-covariance matrices of each
        iteration.

    y_weights_ : ndarray of shape (n_targets, n_components)
        The right singular vectors of the cross-covariance matrices of each
        iteration.

    x_loadings_ : ndarray of shape (n_features, n_components)
        The loadings of `X`.

    y_loadings_ : ndarray of shape (n_targets, n_components)
        The loadings of `y`.

    x_rotations_ : ndarray of shape (n_features, n_components)
        The projection matrix used to transform `X`.

    y_rotations_ : ndarray of shape (n_targets, n_components)
        The projection matrix used to transform `y`.

    coef_ : ndarray of shape (n_targets, n_features)
        The coefficients of the linear model such that `y` is approximated as
        `y = X @ coef_.T + intercept_`.

    intercept_ : ndarray of shape (n_targets,)
        The intercepts of the linear model such that `y` is approximated as
        `y = X @ coef_.T + intercept_`.

        .. versionadded:: 1.1

    n_iter_ : list of shape (n_components,)
        Number of iterations of the power method, for each
        component.

    n_features_in_ : int
        Number of features seen during :term:`fit`.

    feature_names_in_ : ndarray of shape (`n_features_in_`,)
        Names of features seen during :term:`fit`. Defined only when `X`
        has feature names that are all strings.

        .. versionadded:: 1.0

    See Also
    --------
    PLSCanonical : Partial Least Squares transformer and regressor.
    PLSSVD : Partial Least Square SVD.

    Examples
    --------
    >>> from sklearn.cross_decomposition import CCA
    >>> X = [[0., 0., 1.], [1.,0.,0.], [2.,2.,2.], [3.,5.,4.]]
    >>> y = [[0.1, -0.2], [0.9, 1.1], [6.2, 5.9], [11.9, 12.3]]
    >>> cca = CCA(n_components=1)
    >>> cca.fit(X, y)
    CCA(n_components=1)
    >>> X_c, y_c = cca.transform(X, y)
    rn   r   r   Tr2   r3   r   c             
      r   )Nrg   r=   rh   ri   r   r   r   r.   r/   rp   x  r   zCCA.__init__r   r   r.   r.   r   r/   r     s   
 Zr   c                   @   sp   e Zd ZU dZeeddddgdgdgdZeed< dd
d
dddZ	e
d
ddd ZdddZdddZdS )r   a  Partial Least Square SVD.

    This transformer simply performs a SVD on the cross-covariance matrix
    `X'y`. It is able to project both the training data `X` and the targets
    `y`. The training data `X` is projected on the left singular vectors, while
    the targets are projected on the right singular vectors.

    Read more in the :ref:`User Guide <cross_decomposition>`.

    .. versionadded:: 0.8

    Parameters
    ----------
    n_components : int, default=2
        The number of components to keep. Should be in `[1,
        min(n_samples, n_features, n_targets)]`.

    scale : bool, default=True
        Whether to scale `X` and `y`.

    copy : bool, default=True
        Whether to copy `X` and `y` in fit before applying centering, and
        potentially scaling. If `False`, these operations will be done inplace,
        modifying both arrays.

    Attributes
    ----------
    x_weights_ : ndarray of shape (n_features, n_components)
        The left singular vectors of the SVD of the cross-covariance matrix.
        Used to project `X` in :meth:`transform`.

    y_weights_ : ndarray of (n_targets, n_components)
        The right singular vectors of the SVD of the cross-covariance matrix.
        Used to project `X` in :meth:`transform`.

    n_features_in_ : int
        Number of features seen during :term:`fit`.

    feature_names_in_ : ndarray of shape (`n_features_in_`,)
        Names of features seen during :term:`fit`. Defined only when `X`
        has feature names that are all strings.

        .. versionadded:: 1.0

    See Also
    --------
    PLSCanonical : Partial Least Squares transformer and regressor.
    CCA : Canonical Correlation Analysis.

    Examples
    --------
    >>> import numpy as np
    >>> from sklearn.cross_decomposition import PLSSVD
    >>> X = np.array([[0., 0., 1.],
    ...               [1., 0., 0.],
    ...               [2., 2., 2.],
    ...               [2., 5., 4.]])
    >>> y = np.array([[0.1, -0.2],
    ...               [0.9, 1.1],
    ...               [6.2, 5.9],
    ...               [11.9, 12.3]])
    >>> pls = PLSSVD(n_components=2).fit(X, y)
    >>> X_c, y_c = pls.transform(X, y)
    >>> X_c.shape, y_c.shape
    ((4, 2), (4, 2))
    r>   Nrb   rc   re   rj   r\   rm   rn   r   T)r\   rm   c                C   s   || _ || _|| _d S r4   r   )ro   rj   r\   rm   r.   r.   r/   rp     s   
zPLSSVD.__init__rq   c           
      C   s&  t || t| |tjd| jdd}t|dtjd| jdd}|jdkr(|dd}| j}t	|j
d	 |j
d |j
d }||krItd
| d| dt||| j\}}| _| _| _| _t|j|}t|dd\}}}|ddd|f }|d| }t||\}}|j}	|| _|	| _| jj
d | _| S )aJ  Fit model to data.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Training samples.

        y : array-like of shape (n_samples,) or (n_samples, n_targets)
            Targets.

        Returns
        -------
        self : object
            Fitted estimator.
        Tr   rs   rH   Fru   r>   rx   r   ry   rz   r{   rR   N)r   r   r"   r}   rm   r   r~   r   rj   r   rD   r   r]   r\   r   r   r   r   r(   r@   r   r   r   r   r   )
ro   rG   rH   rj   r   rS   rT   r+   rV   Vr.   r.   r/   r     sP   

z
PLSSVD.fitc                 C   s   t |  t| |tjdd}|| j | j }t|| j}|durGt|ddtjd}|j	dkr4|
dd}|| j | j }t|| j}||fS |S )a	  
        Apply the dimensionality reduction.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Samples to be transformed.

        y : array-like of shape (n_samples,) or (n_samples, n_targets),                 default=None
            Targets.

        Returns
        -------
        x_scores : array-like or tuple of array-like
            The transformed data `X_transformed` if `y is not None`,
            `(X_transformed, y_transformed)` otherwise.
        F)r   r   NrH   )rv   rw   r   r>   rx   )r   r   r"   r}   r   r   r(   r   r   r~   r   r   r   r   )ro   rG   rH   ZXrr   yrr   r.   r.   r/   r     s   
zPLSSVD.transformc                 C   r   )a  Learn and apply the dimensionality reduction.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Training samples.

        y : array-like of shape (n_samples,) or (n_samples, n_targets),                 default=None
            Targets.

        Returns
        -------
        out : array-like or tuple of array-like
            The transformed data `X_transformed` if `y is not None`,
            `(X_transformed, y_transformed)` otherwise.
        r   r   r.   r.   r/   r   7  r   zPLSSVD.fit_transformr   r4   )r   r   r   r   r   r   rn   r   r   rp   r   r   r   r   r.   r.   r.   r/   r     s   
 D

@ r   )r1   r2   r3   Fr   )-r   rE   abcr   r   numbersr   r   numpyr"   Zscipy.linalgr   r   baser	   r
   r   r   r   r   
exceptionsr   utilsr   r   Zutils._param_validationr   r   Zutils.extmathr   Zutils.validationr   r   r   __all__r0   rQ   rW   r]   r`   ra   r   r   r   r   r.   r.   r.   r/   <module>   sF     
;



  b  n