o
    i)                    @   s
  d Z ddlZddlZddlZddlmZ ddlmZ ddl	m
Z
mZmZ ddlmZmZmZ ddlmZ ddlmZmZ dd	lmZ dd
lmZ edZejZedZedZdd Ze  Z!dZ"e#ee"Z$e%ee&ee"ee!egZ'e(e'Z)dd Z*dd Z+dd Z,dd Z-dd Z.dd Z/dd Z0dd  Z1d!d" Z2d#d$ Z3d%d& Z4d'd( Z5eej6d)d* Z7eejj6d+d* Z7d,d- Z8eejd.d/ Z9eejjeejj:eejj;eejj<d0d1 Z=eejjeejj:eejj;eejj<dd2d3Z>eej?eej@d4d5 ZAeejjBeejjCd6d7 ZDeejjCd8d9 ZEeejjCd:d; ZFeejjBd<d= ZGeejjCd>d? ZHd@dA ZIdBdC ZJdDdE ZKeejLdFdG ZMdHdI ZNeejOdJdK ZPeejOdLdM ZQdNdO ZReejOdPdQ ZSeejTdRdS ZUeejjTdTdU ZVeejjTdVdW ZWeejjTdXdY ZXeejjYdZd[ ZZeejYd\d] Z[eejjYd^d_ Z\d`da Z]eejjYdbdc Z^eej_ddde Z`eej_dfdg Zaeejj_dhdg Zaeejj_ddidjZbeejcdkdl Zdeejjeeejjfdmdn Zgeejjfdodp Zhdqdr Zieejjfdsdt Zjeejjedudv Zkeejldwdx Zmeejjndydz Zod{d| Zpeejjnd}d~ Zqeejrdd Zseejjtdd Zueejjtdd Zueejjveejjtdd Zueejjvdd Zweejjxdd Zyeejjxdd Zzeejjxdd Z{eejjxdd Z|eej}dd Z~dd Zeejdd Zeejjdd Zeejjdd Zeejdd Zeejjdd Zeejjdd Zeejdd Zeejjdd Zdd Zeejjdd Zeejjdd Zeejjdd Zeejjdd Zeejjdd Zeejjdd Zeejjdd Zeejjdd Zeejjdd Zeejjdd Zeejjdd Zeejjdd Zeejjdd Zeejjdd Zeejjdd Zeejjdd Zeejjdd Zdd ZeejjddĄ ZeejjddƄ ZeejjddȄ Zeejjddʄ Zdd̄ Zdd΄ ZeejjddЄ ZeejjddЄ Zeejjddӄ ZeejjddՄ Zeejjddׄ Zeejjddل Zeejjddۄ Zeejjddۄ Zeejjddބ Zeejjdd Zeejjdd Zeejjdd Zeejjdd Zeejjdd Zeejjdd Zeejjdd Zeejjdd Zeejjdd Zeejjdd Zdd ZeejÃdd ZeejjÃdd ZeejjŃdd Zeejjǃdd Zeejjȃdd ZeejjɃdddZeejjʃdd dZeejj˃dd Zeejj˃dddZedd Zeejj̓dd Zeejj̓dd	dZed
d Zedd ZdS (  z6
Implement the random and np.random module functions.
    N)ir)is_nonelike)	intrinsicoverloadregister_jitable)Registryimpl_ret_untrackedimpl_ret_new_ref	signature)typescgutils)arrayobj)NumbaTypeErrorZ
randomimpl    @   c                 C   s   t t| S N)r   Constantint32_tx r   g/var/www/html/eduruby.in/lip-sync/lip-sync-env/lib/python3.10/site-packages/numba/cpython/randomimpl.py	const_int      r   ip  c                 C   sT   |dv sJ d| }t td}t|j||}|jd |jd ||dS )z
    Get a pointer to the given thread-local random state
    (depending on *name*: "py" or "np").
    If the state isn't initialized, it is lazily initialized with
    system entropy.
    )pynpinternalznumba_get_%s_random_stater   ZreadnoneZnounwind)	r   FunctionTypernd_state_ptr_tr   get_or_insert_functionmodule
attributesaddcall)contextbuildername	func_namefntyfnr   r   r   get_state_ptr4   s   r+   c                 C      t | |dS )z@
    Get a pointer to the thread-local Python random state.
    r   r+   r%   r&   r   r   r   get_py_state_ptrE      r/   c                 C   r,   )z?
    Get a pointer to the thread-local Numpy random state.
    r   r-   r.   r   r   r   get_np_state_ptrK   r0   r1   c                 C   r,   )zB
    Get a pointer to the thread-local internal random state.
    r   r-   r.   r   r   r   get_internal_state_ptrQ   r0   r2   c                 C   s   t | |ddS Nr   r   gep_inboundsr&   	state_ptrr   r   r   get_index_ptrX      r8   c                 C      t | |ddS Nr      r4   r6   r   r   r   get_array_ptr[   r9   r=   c                 C   r:   )Nr      r4   r6   r   r   r   get_has_gauss_ptr^   r9   r?   c                 C   r:   )Nr      r4   r6   r   r   r   get_gauss_ptra   r9   rA   c                 C   s8   t t  tf}t| jj|d}|jd 	d |S )z<
    Get the internal function to shuffle the MT taste.
    Znumba_rnd_shuffler   Z	nocapture)
r   r   VoidTyper   r   r    functionr!   argsZadd_attribute)r&   r)   r*   r   r   r   get_rnd_shuffled   s   rE   c           	   
   C   s6  t ||}||}|d|t}t|| t|}|||f |t	d| W d   n1 s5w   Y  ||}t
||}|t||d|}||t	d}||| ||||t	d}|||||t	dt	d}|||||t	dt	d	}||||t	d
}|S )zB
    Get the next int32 generated by the PRNG at *state_ptr*.
    >=r   Nr<         l   VX:    l     _    )r8   loadicmp_unsignedN_constr   if_unlikelyrE   r$   storer   r=   r5   r#   xorlshrand_shl)	r%   r&   r7   ZidxptridxZneed_reshuffler*   Z	array_ptryr   r   r   get_next_int32o   s,   



rV   c                 C   st   | t| ||td}| t| ||td}||t}||t}|||||t	tdt	tdS )zC
    Get the next double generated by the PRNG at *state_ptr*.
          g      Ag      @C)
rQ   rV   r   uitofpdoubleZfdivfaddfmulr   r   )r%   r&   r7   abr   r   r   get_next_double   s   
r_   c                    sL  t |jd fdd}t t td} d|} |r\}}	| ||}
  	|
t| W d   n1 sEw   Y  |	> rW| 
|}t }
sg| 
|}  	|
t  	|tt td} || W d   n1 sw   Y  W d   n1 sw   Y   |S )z2
    Get the next integer with width *nbits*.
    r   c                    s     | }t }| jj|jjk r ||j}n| jj|jjkr+ ||j}rC t|jd} 	||} 
||S  	||S r3   )subrV   typewidthzexttruncnot_r   r   rQ   rR   )nbitsshiftrU   maskr&   Zc32r%   is_numpyr7   r   r   get_shifted_int   s   z%get_next_int.<locals>.get_shifted_intr   <=N)r   r   ra   r   Zalloca_once_valueint64_trL   if_elserO   rc   r`   rV   r#   rS   rK   )r%   r&   r7   rf   rj   rk   retZis_32bZifsmallZiflargelowhightotalr   ri   r   get_next_int   s4   


rs   c                    s,   t | tjrttd  fdd}|S d S )Nr   c                        | S r   r   r]   r*   r   r   impl   s   zseed_impl.<locals>.impl)
isinstancer   Integerr   
_seed_impl)r]   rw   r   rv   r   	seed_impl   s
   r{   c                 C   s   t | tjr
tdS d S Nr   )rx   r   ry   rz   seedr   r   r   r{         c                    s   t fdd  fddS )Nc                    s    fdd}t tjtj|fS )Nc                    sR   |\}t t  ttf}t|jj|d}|	|t
| | |f | tjd S )NZnumba_rnd_init)r   r   rB   r   r   r   r    rC   r!   r$   r+   Zget_constantr   none)r%   r&   sigrD   Z
seed_valuer)   r*   
state_typer   r   codegen   s   z*_seed_impl.<locals>._impl.<locals>.codegen)r   r   voidZuint32)typingcontextr~   r   r   r   r   _impl   s   z_seed_impl.<locals>._implc                    rt   r   r   r}   r   r   r   <lambda>       z_seed_impl.<locals>.<lambda>r   r   r   )r   r   r   rz      s   
rz   c                         t dd   fddS )Nc                 S      dd }t tj|fS )Nc                 S      t | |d}t| ||S Nr   r+   r_   r%   r&   r   rD   r7   r   r   r   r         z+random_impl.<locals>._impl.<locals>.codegen)r   r   rZ   r   r   r   r   r   r         zrandom_impl.<locals>._implc                           S r   r   r   r   r   r   r          zrandom_impl.<locals>.<lambda>r   r   r   r   r   random_impl   s   
r   c                      r   )Nc                 S   r   )Nc                 S   r   r|   r   r   r   r   r   r      r   z,random_impl0.<locals>._impl.<locals>.codegen)r   r   float64r   r   r   r   r      r   zrandom_impl0.<locals>._implc                      r   r   r   r   r   r   r   r      r   zrandom_impl0.<locals>.<lambda>r   r   r   r   r   random_impl0   s   
r   c                 C   sN   t | r	dddS t| tjst| tjr#t| jtjr%ddd}|S d S d S )Nc                 S   
   t j S r   r   randomsizer   r   r   r        
 zrandom_impl1.<locals>.<lambda>c                 S   s2   t | }|j}t|jD ]	}t j ||< q|S r   )r   emptyflatranger   r   r   outout_flatrT   r   r   r   r   	  
   
zrandom_impl1.<locals>._implr   r   rx   r   ry   UniTupledtyper   r   r   r   r   random_impl1   s   

r   c                    D   t | tjtjfrt |tjtjfr tdd   fddS d S d S )Nc                 S   *   t |}t |}ttj||td||fS r   _double_preprocessorr   r   r   _gauss_impl)r   musigmaloc_preprocessorscale_preprocessorr   r   r   r     
   
zgauss_impl.<locals>._implc                    
    | |S r   r   r   r   r   r   r   r     r   zgauss_impl.<locals>.<lambda>rx   r   Floatry   r   r   r   r   r   
gauss_impl  s   
r   c                   C      dd S )Nc                   S      t jddS N              ?r   r   normalr   r   r   r   r   #      z np_gauss_impl0.<locals>.<lambda>r   r   r   r   r   np_gauss_impl0   s   r   c                 C      t | tjtjfrdd S d S )Nc                 S      t j| dS Nr   r   locr   r   r   r   )  r   z np_gauss_impl1.<locals>.<lambda>rx   r   r   ry   r   r   r   r   np_gauss_impl1&     r   c                    r   )Nc                 S   r   r|   r   )r   r   scaler   r   r   r   r   r   0  r   znp_gauss_impl2.<locals>._implc                    r   r   r   r   r   r   r   r   r   6  r   z np_gauss_impl2.<locals>.<lambda>r   r   r   r   r   np_gauss_impl2,     
r   c                 C   J   t | rdd S t| tjst| tjr!t| jtjr#dd }|S d S d S )Nc                 S   
   t j S r   r   r   standard_normalr   r   r   r   r   <  r   z'standard_normal_impl1.<locals>.<lambda>c                 S   2   t | }|j}t|jD ]	}t j ||< q|S r   )r   r   r   r   r   r   r   r   r   r   r   r   @  r   z$standard_normal_impl1.<locals>._implr   r   r   r   r   standard_normal_impl19     r   c                 C      t | tjtjfrt |tjtjfrt|rdd S t | tjtjfrEt |tjtjfrGt |tjs?t |tjrIt |jtjrKdd }|S d S d S d S d S )Nc                 S      t j| |S r   r   r   r   r   r   r   r   r   N  r   z np_gauss_impl3.<locals>.<lambda>c                 S   6   t |}|j}t|jD ]}t j| |||< q|S r   )r   r   r   r   r   r   r   r   r   r   r   r   rT   r   r   r   r   T  
   
znp_gauss_impl3.<locals>._implrx   r   r   ry   r   r   r   r   r   r   r   r   r   r   np_gauss_impl3I  (   

r   c                        fdd}|S )Nc                     sj   	 d   d } d   d }| |  ||  }|dk r |dkr nqt dt | | }||  || fS )zG
        Compute a pair of numbers on the normal distribution.
        T       @r   r          )mathsqrtlog)x1Zx2r2f_randomr   r   compute_gauss_pair^  s   z,_gauss_pair_impl.<locals>.compute_gauss_pairr   )r   r   r   r   r   _gauss_pair_impl]  s   r   c                        fdd}|S )Nc                    s  |j }| |}tjtjjd }t| |}tj||dd}t||}	t||}
t	||
|
}||l\}}| ||
|	| |td|
 W d    n1 sYw   Y  |5 | |t|tt|dd}t||d\}}|||	 ||| |td|
 W d    n1 sw   Y  W d    n1 sw   Y  |\}}| ||||||
|S )N)r   r   resultr'   r   r>   r   r<   )return_typeZget_data_typer   r   r+   r   alloca_oncerA   r?   Zis_truerK   rn   rO   r   compile_internalr   r   r   r   Zunpack_tupler[   r\   )r%   r&   r   rD   tyZlltyr   r7   ro   Z	gauss_ptrZhas_gauss_ptrZ	has_gaussZthenZ	otherwisepairfirstsecondr   r   r   r   stater   r   r   p  sH   


z_gauss_impl.<locals>._implr   )r   r   r   r   r   r   r   r   o  s   $r   c                    sj   t j  t| tjr| jr fddS  fddS t| tjr/| jdkr+ fddS dd S td|  )Nc                       |  | S r   )Zsitofpr&   vr   r   r   r         z&_double_preprocessor.<locals>.<lambda>c                    r   r   )rY   r   r   r   r   r     r   r   c                    r   r   )Zfpextr   r   r   r   r     r   c                 S      |S r   r   )_builderr   r   r   r   r         z(Cannot convert {} to floating point type)	r   r   
DoubleTyperx   ry   signedr   bitwidth	TypeError)valuer   r   r   r     s   

r   c                    s(   t | tjrtdd   fddS d S )Nc                 S   s   dd }t tj||fS )Nc           	      S   s   |\}| d|td}| d|td}t|||| d}| j|t|f W d    n1 s5w   Y  t| |d}t	| |||dS )NrF   A   ==r   z getrandbits() limited to 64 bitsr   F)
rL   r   r   rN   or_	call_convreturn_user_excOverflowErrorr+   rs   )	r%   r&   r   rD   rf   	too_largeZ	too_smallmsgr7   r   r   r   r     s   
z0getrandbits_impl.<locals>._impl.<locals>.codegen)r   r   Zuint64)r   kr   r   r   r   r     s   zgetrandbits_impl.<locals>._implc                    rt   r   r   r  r   r   r   r     r   z"getrandbits_impl.<locals>.<lambda>)rx   r   ry   r   r  r   r   r   getrandbits_impl  s
   
r  c              	      s  t  td}td}	tj dd}
  |||
   d||!  	 	 
|
||	} || |
 W d    n1 sRw   Y    d||	!   	 
|
||	} || |
 W d    n1 sw   Y   
|
t  d| d}j t|f W d    n1 sw   Y  ttjjg}t jj|d	 }d
krԈ |	n}  ||tjgt ttjtj dd fdd}d
krU  d|	9\}}|  | W d    n	1 s)w   Y  | |  W d    n	1 s?w   Y  W d    n	1 sOw   Y  n|   	|  
|S )Nr   r<   nr   <>rl   zempty range for randrange()zllvm.ctlz.%sr   rc                     s~     d}   d} |   |  t dk} |} d|} || |  |  | d S )Nwhilez	while.endr   rF   )append_basic_blockbranchposition_at_endrs   rd   icmp_signedZcbranchrO   )Zbbwhilebbendr  r  r&   r%   r  rf   Zrptrr   r7   r   r   r   get_num  s   




z _randrange_impl.<locals>.get_numr  )r+   r   r   r   r   rO   r`   if_thenr  r#   rK   ZsdivrN   r
  r  
ValueErrorr   Ztrue_bitra   r    rC   r!   rd   r$   r   rb   rn   mul)r%   r&   startstopstepr   r  r   zerooneZnptrwr  r)   r*   Znm1r  Zis_oneZ
is_not_oner   r  r   _randrange_impl  sT   


r'  c                 C      t | tjr
dd S d S )Nc                 S   s   t d| dS r;   r   	randranger!  r   r   r   r     r   z"randrange_impl_1.<locals>.<lambda>rx   r   ry   r+  r   r   r   randrange_impl_1  r   r-  c                 C   (   t | tjrt |tjrdd S d S d S )Nc                 S   s   t | |dS Nr<   r)  r!  r"  r   r   r   r     r   z"randrange_impl_2.<locals>.<lambda>r,  r0  r   r   r   randrange_impl_2	     r1  c                 C   s(   |j | kr|jrtjjS tjjS dd S )Nc                 S   r   r   r   )r   r   Z_tyr   r   r   r     r  z)_randrange_preprocessor.<locals>.<lambda>)r  r  r   Z	IRBuilderZsextrc   )r  r   r   r   r   _randrange_preprocessor  s
   
r3  c                    s   t | tjrRt |tjrTt |tjrVt| j|j|jt| j|j|j}tj|t|t	|| t	||t	||t
fdd  fddS d S d S d S )Nc                    s&   fdd}t  ||||fS )Nc              	      sD   |\}}}|| }|| }|| }t | |||| dS r   )r'  r%   r&   r   rD   r!  r"  r#  )	llvm_typer  start_preprocessorstep_preprocessorstop_preprocessorr   r   r   &  s   
z0randrange_impl_3.<locals>._impl.<locals>.codegenr
   )r   r!  r"  r#  r   )int_tyr5  r  r6  r7  r8  r   r   r   $  s   zrandrange_impl_3.<locals>._implc                    s    | ||S r   r   )r!  r"  r#  r   r   r   r   /  r   z"randrange_impl_3.<locals>.<lambda>rx   r   ry   maxr  r  Zfrom_bitwidthr   IntTyper3  r   )r!  r"  r#  r  r   )r   r9  r5  r  r6  r7  r8  r   randrange_impl_3  s   





r=  c                 C   r.  )Nc                 S   s   t | |d dS r/  r)  r]   r^   r   r   r   r   5  s    z randint_impl_1.<locals>.<lambda>r,  r>  r   r   r   randint_impl_12  r2  r?  c                 C   r(  )Nc                 S   s   t jd| S r3   r   r   randintrp   r   r   r   r   ;  r   z#np_randint_impl_1.<locals>.<lambda>r,  rB  r   r   r   np_randint_impl_18  r   rC  c                    s   t | tjrBt |tjrDt| j|jt| j|j}tj|t|t	|| t	||t
fdd  fddS d S d S )Nc                    s"   fdd}t  |||fS )Nc              	      sB   |\}}|| }|| }t  d}t| |||| dS )Nr<   r   )r   r   r'  r4  )r5  r  r6  r8  r   r   r   K  s   z1np_randint_impl_2.<locals>._impl.<locals>.codegenr
   )r   rp   rq   r   )r9  r5  r  r6  r8  r   r   r   I  s   z np_randint_impl_2.<locals>._implc                    r   r   r   rp   rq   r   r   r   r   T  r   z#np_randint_impl_2.<locals>.<lambda>r:  )rp   rq   r  r   )r   r9  r5  r  r6  r8  r   np_randint_impl_2>  s   



rE  c                    s   t | tjrt |tjrt|rdd S t | tjrJt |tjrLt |tjs3t |tjrNt |jtjrPt| j|j}tt	d|   fdd}|S d S d S d S d S )Nc                 S   r   r   r@  rp   rq   r   r   r   r   r   [  r   z#np_randint_impl_3.<locals>.<lambda>intc                    s:   t j| d}|j}t|jD ]}t j| |||< q|S N)r   )r   r   r   r   r   r   rA  rp   rq   r   r   r   rT   Zresult_typer   r   r   c  s
   z np_randint_impl_3.<locals>._impl)
rx   r   ry   r   r   r   r;  r  getattrr   )rp   rq   r   r  r   r   rJ  r   np_randint_impl_3W  s$   

rL  c                   C   r   )Nc                   S   r   r   r   r   uniformr   r   r   r   r   n  r   z"np_uniform_impl0.<locals>.<lambda>r   r   r   r   r   np_uniform_impl0l     rO  c                    r   )Nc                 S   r   r   r   r   r   r   uniform_impl)r   r]   r^   low_preprocessorhigh_preprocessorr   r   r   r   u  
   zuniform_impl2.<locals>._implc                    r   r   r   r>  r   r   r   r   {  r   zuniform_impl2.<locals>.<lambda>r   r>  r   r   r   uniform_impl2q  r   rV  c                    r   )Nc                 S   r   r|   rQ  )r   rp   rq   rS  rT  r   r   r   r     rU  znp_uniform_impl2.<locals>._implc                    r   r   r   rD  r   r   r   r     r   z"np_uniform_impl2.<locals>.<lambda>r   rD  r   r   r   np_uniform_impl2~  r   rW  c                    r   )Nc           	         sT   t | |}|\}} ||}||}|||}t| ||}|||||S r   )r+   Zfsubr_   r[   r\   )	r%   r&   r   rD   r7   r]   r^   rb   r  a_preprocessorb_preprocessorr   r   r   rw     s   

zuniform_impl.<locals>.implr   )r   rY  rZ  rw   r   rX  r   rR    s   rR  c                 C   r   )Nc                 S   r   r   rM  rF  r   r   r   r     r   z"np_uniform_impl3.<locals>.<lambda>c                 S   r   r   )r   r   r   r   r   r   rN  rI  r   r   r   r     r   znp_uniform_impl3.<locals>._implr   )rp   rq   r   r   r   r   r   np_uniform_impl3  r   r[  c                 C   s8   dd }t | tjtjfrt |tjtjfr|S d S d S )Nc                 S   s@   t   }d}||krd| }|| } }| ||  t||   S )N      ?r   r   r   r   )rp   rq   ucr   r   r   r     s   
z triangular_impl_2.<locals>._implr   )rp   rq   r   r   r   r   triangular_impl_2  s   r`  c                 C   N   t | tjtjfr!t |tjtjfr#t |tjtjfr%dd }|S d S d S d S )Nc                 S   s`   || kr| S t   }||  ||   }||kr#d| }d| }|| } }| ||  t||   S r   r]  )rp   rq   moder^  r_  r   r   r   r     s   
 triangular_impl_3.<locals>._implr   )rp   rq   rb  r   r   r   r   triangular_impl_3     rd  c                 C   ra  )Nc                 S   sb   || kr| S t j }||  ||   }||kr$d| }d| }|| } }| ||  t||   S r   )r   r   r   r   )leftrb  rightr^  r_  r   r   r   r     s   

rc  r   )rf  rb  rg  r   r   r   r   rd    re  c                 C   sN   t |r	dddS t|tjst|tjr#t|jtjr%ddd}|S d S d S )Nc                 S      t j| ||S r   )r   r   
triangular)rf  rb  rg  r   r   r   r   r     s    z!triangular_impl.<locals>.<lambda>c                 S   s8   t |}|j}t|jD ]}t j| ||||< q|S r   )r   r   r   r   r   r   ri  )rf  rb  rg  r   r   r   rT   r   r   r   r     s
   
ztriangular_impl.<locals>._implr   r   )rf  rb  rg  r   r   r   r   r   triangular_impl  s   

rj  c                 C   s6   t | tjtjfrt |tjtjfrttjS d S d S r   )rx   r   r   ry   _gammavariate_implr   alphabetar   r   r   gammavariate_impl  
   
ro  c                 C   r   )Nc                 S   r   r   r   r   gammashaper   r   r   r     r   z%ol_np_random_gamma1.<locals>.<lambda>r   rs  r   r   r   ol_np_random_gamma1  s   ru  c                    sL   t | tjtjfr"t |tjtjfr$tttjj  fdd}|S d S d S )Nc                    r   r   r   )rt  r   rv   r   r   rw        
z!ol_np_random_gamma2.<locals>.impl)rx   r   r   ry   r   rk  r   r   )rt  r   rw   r   rv   r   ol_np_random_gamma2      rw  c                    r   )Nc                    s  dt d }| dks|dkrtd| dkrvt d|  d }| t d }| | }	   }d|  k r9d	k s;n q+d   }t |d|  | }| t | }	|| | }
|||  |	 }|| d|
  dksq|t |
kru|	| S q,| dkrt d    | S 	   }t j|  t j }|| }|dkr|d|   }	n
t || |   }	  }|dkr||	| d  kr	 |	| S n|t |	 kr	 |	| S q)
z1Gamma distribution.  Taken from CPython.
        r   g      @r   z*gammavariate: alpha and beta must be > 0.0r   g      @r<   gHz>gP?)r   r   r  r   expe)rm  rn  SG_MAGICCONSTainvbbbcccu1u2r   r   zr  r^  r^   pr   r   r   r     sL   
"z!_gammavariate_impl.<locals>._implr   r   r   r   r   r   rk  
  s   7rk  c                 C   J   t |rdd S t|tjst|tjr!t|jtjr#dd }|S d S d S )Nc                 S   r   r   rq  )rt  r   r   r   r   r   r   H  r   zgamma_impl.<locals>.<lambda>c                 S   r   r   )r   r   r   r   r   r   rr  )rt  r   r   r   r   rT   r   r   r   r   L  r   zgamma_impl.<locals>._implr   )rt  r   r   r   r   r   r   
gamma_implE  r   r  c                 C   J   t |rdd S t|tjst|tjr!t|jtjr#dd }|S d S d S )Nc                 S      t j| S r   r   r   standard_gamma)rt  r   r   r   r   r   X  r   z%standard_gamma_impl.<locals>.<lambda>c                 S   4   t |}|j}t|jD ]
}t j| ||< q|S r   )r   r   r   r   r   r   r  )rt  r   r   r   rT   r   r   r   r   \  
   
z"standard_gamma_impl.<locals>._implr   )rt  r   r   r   r   r   standard_gamma_implU  r   r  c                 C   s6   t | tjtjfrt |tjtjfrttjS d S d S r   )rx   r   r   ry   _betavariate_implr   gammavariaterl  r   r   r   betavariate_imple  rp  r  c                    sL   t | tjtjfr"t |tjtjfr$tttjj  fdd}|S d S d S )Nc                    r   r   r   r>  rv   r   r   rw   q  rv  zol_np_random_beta.<locals>.impl)	rx   r   r   ry   r   r  r   r   rr  )r]   r^   rw   r   rv   r   ol_np_random_betal  rx  r  c                    r   )Nc                    s(    | d}|dkrdS || |d  S )z0Beta distribution.  Taken from CPython.
        r   r   r   )rm  rn  rU   rr  r   r   r   w  s   
z _betavariate_impl.<locals>._implr   )rr  r   r   r  r   r  v  s   
r  c                 C   r  )Nc                 S   r   r   )r   r   rn  )r]   r^   r   r   r   r   r     r   zbeta_impl.<locals>.<lambda>c                 S   r   r   )r   r   r   r   r   r   rn  )r]   r^   r   r   r   rT   r   r   r   r     r   zbeta_impl.<locals>._implr   )r]   r^   r   r   r   r   r   	beta_impl  r   r  c                 C      t | tjrdd }|S d S )Nc                 S   s   t dt   |  S )z;Exponential distribution.  Taken from CPython.
            r   )r   r   r   )lambdr   r   r   r     s   zexpovariate_impl.<locals>._implrx   r   r   )r  r   r   r   r   expovariate_impl  s   
r  c                 C   "   t | tjtjfrdd }|S d S )Nc                 S   s   t dtj   |  S r   r   r   r   r   r   r   r   r   r     s   exponential_impl.<locals>._implr   )r   r   r   r   r   exponential_impl  s   r  c                 C   r  )Nc                 S   r  r   )r   r   exponentialr   r   r   r   r   r     r   z"exponential_impl.<locals>.<lambda>c                 S   r  r   )r   r   r   r   r   r   r  r   r   r   r   rT   r   r   r   r     r  r  r   r   r   r   r   r   r   r    r   c                  C      dd } | S )Nc                   S   s   t dtj   S r   r  r   r   r   r   r     s   r  r   r   r   r   r   r    s   c                 C   r   )Nc                 S   r   r   )r   r   standard_exponentialr   r   r   r   r     r   z+standard_exponential_impl.<locals>.<lambda>c                 S   r   r   )r   r   r   r   r   r   r  r   r   r   r   r     r   z(standard_exponential_impl.<locals>._implr   r   r   r   r   standard_exponential_impl  s   
r  c                   C   r   )Nc                   S   r   r   r   r   	lognormalr   r   r   r   r     r   z$np_lognormal_impl0.<locals>.<lambda>r   r   r   r   r   np_lognormal_impl0  rP  r  c                 C   r   )Nc                 S   r   r   r  meanr   r   r   r     r   z%np_log_normal_impl1.<locals>.<lambda>r   r  r   r   r   np_log_normal_impl1  r   r  c                    sH   t | tjtjfr t |tjtjfr"tttjj  fddS d S d S )Nc                    r   r   r   r  r   rv   r   r   r     r   z%np_log_normal_impl2.<locals>.<lambda>)	rx   r   r   ry   r   _lognormvariate_implr   r   r   r  r   rv   r   np_log_normal_impl2  s   r  c                 C   r  )Nc                 S   r   r   r  )r  r   r   r   r   r   r     r   z lognormal_impl.<locals>.<lambda>c                 S   r   r   )r   r   r   r   r   r   r  )r  r   r   r   r   rT   r   r   r   r     r   zlognormal_impl.<locals>._implr   )r  r   r   r   r   r   r   lognormal_impl  r   r  c                    s:   t | tjrt |tjrtttj  fddS d S d S )Nc                    r   r   r   r   rv   r   r   r     r   z%lognormvariate_impl.<locals>.<lambda>)rx   r   r   r   r  r   gaussr   r   rv   r   lognormvariate_impl  s   r  c                    s    fddS )Nc                    s   t  | |S r   )r   ry  r   Z_gaussr   r   r      s    z&_lognormvariate_impl.<locals>.<lambda>r   r  r   r  r   r    r   r  c                 C   r  )Nc                 S   s   dt    }d|d|    S )z)Pareto distribution.  Taken from CPython.r   )r   )rm  r^  r   r   r   r     s   z!paretovariate_impl.<locals>._implr  )rm  r   r   r   r   paretovariate_impl  s   r  c                 C   r  )Nc                 S   s"   dt j  }d|d|    d S )Nr   r<   r   r]   r^  r   r   r   r        pareto_impl.<locals>._implr  r]   r   r   r   r   pareto_impl  s   r  c                 C   r  )Nc                 S   r  r   )r   r   paretor]   r   r   r   r   r     r   zpareto_impl.<locals>.<lambda>c                 S   r  r   )r   r   r   r   r   r   r  r]   r   r   r   rT   r   r   r   r   !  r  r  r   r]   r   r   r   r   r   r    r   c                 C   8   t | tjtjfrt |tjtjfrdd }|S d S d S )Nc                 S   s$   dt    }| t| d|   S )z*Weibull distribution.  Taken from CPython.r   )r   r   r   )rm  rn  r^  r   r   r   r   .  s   z"weibullvariate_impl.<locals>._implr   )rm  rn  r   r   r   r   weibullvariate_impl*  s   r  c                 C   r  )Nc                 S   s"   dt j  }t| d|   S r   r   r   r   r   r  r   r   r   r   :  r  zweibull_impl.<locals>._implr   r  r   r   r   weibull_impl7  s   r  c                 C   r  )Nc                 S   r  r   )r   r   weibullr  r   r   r   r   E  r   zweibull_impl2.<locals>.<lambda>c                 S   r  r   )r   r   r   r   r   r   r  r  r   r   r   r   I  r  zweibull_impl2.<locals>._implr   r  r   r   r   weibull_impl2B  r   r  c                 C   s*   t | tjrt |tjrttjS d S d S r   )rx   r   r   _vonmisesvariate_implr   r   kappar   r   r   vonmisesvariate_implR  s   
r  c                 C   s,   t | tjrt |tjrttjjS d S d S r   )rx   r   r   r  r   r   r  r   r   r   r  X  s   c                    r   )Nc                    s   |dkrdt j    S d| }|t d||   }	   }t t j| }|||  }  }|d||  k sC|d| t | krDnqd| }|| d||   }	  }
|
dkrh| t |	 dt j  }|S | t |	 dt j  }|S )zCircular data distribution.  Taken from CPython.
        Note the algorithm in Python 2.6 and Numpy is different:
        http://bugs.python.org/issue17141
        gư>r   r\  r   )r   pir   cosry  acos)r   r  sr  r  r  dr  qr   u3thetar   r   r   r   _  s(   &	z$_vonmisesvariate_impl.<locals>._implr   r  r   r   r   r  ^  s   (r  c                 C   r  )Nc                 S   r   r   )r   r   vonmises)r   r  r   r   r   r   r     r   zvonmises_impl.<locals>.<lambda>c                 S   r   r   )r   r   r   r   r   r   r  )r   r  r   r   r   rT   r   r   r   r     r   zvonmises_impl.<locals>._implr   )r   r  r   r   r   r   r   vonmises_impl  r   r  c                 C   2   t | tjrt |tjtjfrdd }|S d S d S )Nc                 S   s\  | dk rt dd|  krdkst d t d|dkr dS |dkr&| S |dk}|r0d| }d| }d}||  }|dkrT|d	K }| d	L } ||  }| dksPJ |dks>| | }t| |d
t|| d   }d}|dkrd}	tj }
|}|	|kr|
|kr||r| |	 n|	7 }|d8 }n|
|8 }
|	d7 }	| |	 d | | |	|  }|	|ks{|dksn|S )z
            Binomial distribution.  Numpy's variant of the BINV algorithm
            is used.
            (Numpy uses BTPE for n*p >= 30, though)
            r   zbinomial(): n <= 0r   r   zbinomial(): p outside of [0, 1]r\  r<   gx0 r>         $@)r  minr   r   r   r   )r  r  Zflippedr  ZnitersqnZnp_prodboundrr   XUZpxr   r   r   r     sP    
binomial_impl.<locals>._implrx   r   ry   r   r  r  r   r   r   r   binomial_impl  s   1r  c                 C   r  )Nc                 S   r   r   )r   r   binomial)r  r  r   r   r   r   r     r   zbinomial_impl.<locals>.<lambda>c                 S   s<   t j|t jd}|j}t|jD ]}t j| |||< q|S rH  )r   r   intpr   r   r   r   r  )r  r  r   r   r   rT   r   r   r   r     s
   r  r   )r  r  r   r   r   r   r   r    r   c                 C   r  )Nc                 S   s   dt j| d  S Nr   r  )dfr   r   r   r        zchisquare_impl.<locals>._implr   r  r   r   r   r   chisquare_impl  s   r  c                 C   r  )Nc                 S   r  r   r   r   	chisquare)r  r   r   r   r   r     r   z!chisquare_impl2.<locals>.<lambda>c                 S   r  r   )r   r   r   r   r   r   r  r  r   r   r   rT   r   r   r   r     r  zchisquare_impl2.<locals>._implr   r  r   r   r   r   r   chisquare_impl2  r   r  c                 C   r  )Nc                 S   s    t j| | t j||   S r   r  )dfnumdfdenr   r   r   r     s   f_impl.<locals>._implr   )r  r  r   r   r   r   f_impl     r  c                 C   sn   t | tjtjfrt |tjtjfrt|rdd S t |tjs-t |tjr3t |jtjr5dd }|S d S d S )Nc                 S   r   r   )r   r   r   )r  r  r   r   r   r   r     r   zf_impl.<locals>.<lambda>c                 S   r   r   )r   r   r   r   r   r   r   )r  r  r   r   r   rT   r   r   r   r     r   r  r   )r  r  r   r   r   r   r   r    s   c                 C   r  )Nc                 S   s   | dks| dkrt dd|  }| dkr7td}|  }}tj }||kr5||9 }||7 }|d7 }||ks%|S ttdtj  t| S )Nr   r   z geometric(): p outside of (0, 1]gUUUUUU?r<   )r  rG  r   r   r   ceilr   )r  r  r  sumprodr  r   r   r   r     s    
geometric_impl.<locals>._implr   )r  r   r   r   r   geometric_impl  s   r  c                 C   r  )Nc                 S   r  r   )r   r   	geometricr  r   r   r   r   r   3  r   z geometric_impl.<locals>.<lambda>c                 S   :   t j|t jd}|j}t|jD ]
}t j| ||< q|S rH  )r   r   int64r   r   r   r   r  r  r   r   r   rT   r   r   r   r   7  
   r  r   r  r   r   r   r   r   r  0  r   c                 C   r  )Nc                 S   s(   dt j  }| |tt|   S r   r  r   r   r  r   r   r   r   D  s   zgumbel_impl.<locals>._implr   )r   r   r   r   r   r   gumbel_impl@  r  r  c                 C   r  )Nc                 S   r   r   )r   r   gumbelr   r   r   r   r   N  r   zgumbel_impl3.<locals>.<lambda>c                 S   r   r   )r   r   r   r   r   r   r  r   r   r   r   r   R  r   zgumbel_impl3.<locals>._implr   r   r   r   r   gumbel_impl3K  r   r  c                 C   ra  )Nc                 S   s   t |t |  t | }tt|| }|}t |}|dkr=|dkr=|ttj |||   8 }|d8 }|dkr=|dks!t || }| |krMt || S |S )z'Numpy's algorithm for hypergeometric().r   r   r<   )rG  floatr  r   floorr   r   )ngoodnbadnsampleZd1Zd2YKZr   r   r   r   `  s    "hypergeometric_impl.<locals>._implr   )r  r  r  r   r   r   r   hypergeometric_impl[  s   r  c                 C   sJ   t |rdd S t|tjst|tjr!t|jtjr#dd }|S d S d S )Nc                 S   rh  r   )r   r   hypergeometric)r  r  r  r   r   r   r   r   v  r9   z%hypergeometric_impl.<locals>.<lambda>c                 S   s>   t j|t jd}|j}t|jD ]}t j| ||||< q|S rH  )r   r   r  r   r   r   r   r  )r  r  r  r   r   r   rT   r   r   r   r   {  s
   r  r   )r  r  r  r   r   r   r   r   r  s  s   c                   C   r   )Nc                   S   r   r   r   r   laplacer   r   r   r   r     r   zlaplace_impl0.<locals>.<lambda>r   r   r   r   r   laplace_impl0  rP  r  c                 C   r   )Nc                 S   r   r   r  r   r   r   r   r     r   zlaplace_impl1.<locals>.<lambda>r   r   r   r   r   laplace_impl1  r   r  c                 C   0   t | tjtjfrt |tjtjfrtS d S d S r   )rx   r   r   ry   laplace_implr   r   r   r   laplace_impl2  
   r  c                 C   r  )Nc                 S   r   r   r  r   r   r   r   r     r   zlaplace_impl3.<locals>.<lambda>c                 S   r   r   )r   r   r   r   r   r   r  r   r   r   r   r     r   zlaplace_impl3.<locals>._implr   r   r   r   r   laplace_impl3  r   r  c                 C   sB   t j }|dk r| |t||   S | |td| |   S )Nr\  r   r  r  r   r   r   r
    s   
r
  c                   C   r   )Nc                   S   r   r   r   r   logisticr   r   r   r   r     r   z logistic_impl0.<locals>.<lambda>r   r   r   r   r   logistic_impl0  rP  r  c                 C   r   )Nc                 S   r   r   r  r   r   r   r   r     r   z logistic_impl1.<locals>.<lambda>r   r   r   r   r   logistic_impl1  r   r  c                 C   r	  r   )rx   r   r   ry   logistic_implr   r   r   r   logistic_impl2  r  r  c                 C   r  )Nc                 S   r   r   r  r   r   r   r   r     r   z logistic_impl3.<locals>.<lambda>c                 S   r   r   )r   r   r   r   r   r   r  r   r   r   r   r     r   zlogistic_impl3.<locals>._implr   r   r   r   r   logistic_impl3  r   r  c                 C   s$   t j }| |t|d|    S r   r  r  r   r   r   r    s   
r  c                 C   s   | dks| dkrt dtd|  }	 tj }|| krdS tj }dt||  }||| krBtdt|t|  S ||krHdS dS )z"Numpy's algorithm for logseries().r   r   z logseries(): p outside of (0, 1]r<   r>   )r  r   r   r   r   ry  r  )r  r  Vr  r  r   r   r   _logseries_impl  s   

r  c                 C   s   t | tjtjfrtS d S r   )rx   r   r   ry   r  )r  r   r   r   logseries_impl  s   r  c                 C   r  )Nc                 S   r  r   )r   r   	logseriesr  r   r   r   r     r   z logseries_impl.<locals>.<lambda>c                 S   r  rH  )r   r   r  r   r   r   r   r  r  r   r   r   r     r  zlogseries_impl.<locals>._implr   r  r   r   r   r    r   c                 C   r  )Nc                 S   sJ   | dkrt d|dk s|dkrt dtj| d| | }tj|S )Nr   znegative_binomial(): n <= 0r   r   z(negative_binomial(): p outside of [0, 1])r  r   r   rr  poisson)r  r  r  r   r   r   r     s   z%negative_binomial_impl.<locals>._implr  r  r   r   r   negative_binomial_impl   s   r  c                   C   r   )Nc                   S      t jdS r   r   r   r  r   r   r   r   r     r   zpoisson_impl0.<locals>.<lambda>r   r   r   r   r   poisson_impl0  rP  r  c                    s.   t | tjtjfrtdd   fddS d S )Nc                    s$   t |  fdd}ttj||fS )Nc                    s0  t | |}tj|tdd}|d}|d}|\}||}|d|ttd}	|	|	, t
tttf}
t|jj|
d}||||f}||| || W d    n1 s^w   Y  || || tjjtj  fdd	}| ||||}||| || || ||S )
Nro   r   bbcontr  rF   r  Znumba_poisson_ptrsc                    sT   | dk rt d| dkrdS  |  }d}d}	  }||9 }||kr%|S |d7 }q)ag  Numpy's algorithm for poisson() on small *lam*.

                    This method is invoked only if the parameter lambda of the
                    distribution is small ( < 10 ). The algorithm used is
                    described in "Knuth, D. 1969. 'Seminumerical Algorithms.
                    The Art of Computer Programming' vol 2.
                    r   zpoisson(): lambda < 0r   r   r<   r  )lamZenlamr  r  r  _expr   r   r   poisson_impl7  s   
zCpoisson_impl1.<locals>._impl.<locals>.codegen.<locals>.poisson_impl)r1   r   r   rm   r  Zfcmp_orderedr   r   rZ   r  r   r   r    rC   r!   r$   rO   r  r  r   r   r   ry  r   rK   )r%   r&   r   rD   r7   Zretptrr  r  r   Zbig_lamr)   r*   ro   r#  Zlam_preprocessorr!  r   r     s:   










z-poisson_impl1.<locals>._impl.<locals>.codegen)r   r   r   r  )r   r   r   r   r$  r   r     s   7zpoisson_impl1.<locals>._implc                    rt   r   r   r   r   r   r   r   S  r   zpoisson_impl1.<locals>.<lambda>r   r%  r   r   r   poisson_impl1  s
   
;r&  c                 C   sr   t | tjtjfrt|rdd S t | tjtjfr3t |tjs-t |tjr5t |jtjr7dd }|S d S d S d S )Nc                 S   r  r   r  )r   r   r   r   r   r   Y  r   zpoisson_impl2.<locals>.<lambda>c                 S   r  rH  )r   r   r  r   r   r   r   r  )r   r   r   r   rT   r   r   r   r   _  r  zpoisson_impl2.<locals>._implr   )r   r   r   r   r   r   poisson_impl2V  s   

r'  c                 C   r  )Nc                 S   s2   | dkrt dtdttj   d|  S )Nr   zpower(): a <= 0r<   r   )r  r   powry  r   r   r  ru   r   r   r   r   k  s
   power_impl.<locals>._implr   r  r   r   r   
power_implh     r*  c                 C   r  )Nc                 S   r  r   )r   r   powerr  r   r   r   r   w  r   zpower_impl.<locals>.<lambda>c                 S   r  r   )r   r   r   r   r   r   r,  r  r   r   r   r   {  r  r)  r   r  r   r   r   r*  t  r   c                   C   r   )Nc                   S   r  r   r   r   rayleighr   r   r   r   r     r   z rayleigh_impl0.<locals>.<lambda>r   r   r   r   r   rayleigh_impl0  rP  r/  c                 C   r  )Nc              	   S   s2   | dkrt d| tdtdtj    S )Nr   zrayleigh(): scale <= 0r   r   )r  r   r   r   r   r   r  r   r   r   rw     s   "zrayleigh_impl1.<locals>.implr   )r   rw   r   r   r   rayleigh_impl1     r0  c                 C   r  )Nc                 S   r  r   r-  r  r   r   r   r     r   z rayleigh_impl2.<locals>.<lambda>c                 S   r  r   )r   r   r   r   r   r   r.  r  r   r   r   r     r  zrayleigh_impl2.<locals>._implr   r  r   r   r   rayleigh_impl2  r   r2  c                  C   r  )Nc                   S   s   t j t j  S r   r   r   r   r   r   r     r  zcauchy_impl.<locals>._implr   r   r   r   r   cauchy_impl  s   r3  c                 C   r   )Nc                 S   r   r   )r   r   standard_cauchyr   r   r   r   r     r   z&standard_cauchy_impl.<locals>.<lambda>c                 S   r   r   )r   r   r   r   r   r   r4  r   r   r   r   r     r   z#standard_cauchy_impl.<locals>._implr   r   r   r   r   standard_cauchy_impl  r   r5  c                 C   r  )Nc                 S   s:   t j }t j| d }t| d | t| }|S r  )r   r   r   r  r   r   )r  NGr  r   r   r   r     s   
zstandard_t_impl.<locals>._implr   r  r   r   r   standard_t_impl  r+  r8  c                 C   r  )Nc                 S   r  r   )r   r   
standard_tr  r   r   r   r     r   z"standard_t_impl2.<locals>.<lambda>c                 S   r  r   )r   r   r   r   r   r   r9  r  r   r   r   r     r  zstandard_t_impl2.<locals>._implr   r  r   r   r   standard_t_impl2  r   r:  c                 C   s,   t | tjrt |tjrdd }|S d S d S )Nc                 S   s   | dkrt d|dkrt d| d|  }tj }| | | }| ||td| | ||     }tj }|| | |  krC|S | |  | S )Nr   zwald(): mean <= 0zwald(): scale <= 0r      )r  r   r   r   r   r   )r  r   Zmu_2lr  r  r  r   r   r   r     s   
&
zwald_impl.<locals>._implr  )r  r   r   r   r   r   	wald_impl  s   r<  c                 C   r  )Nc                 S   r   r   )r   r   wald)r  r   r   r   r   r   r     r   zwald_impl2.<locals>.<lambda>c                 S   r   r   )r   r   r   r   r   r   r=  )r  r   r   r   r   rT   r   r   r   r     r   zwald_impl2.<locals>._implr   )r  r   r   r   r   r   r   
wald_impl2  r   r>  c                 C   r  )Nc                 S   s   | dkrt d| d }d| }	 dtj  }tj }tt|d|  }dd|  | }|dkrF|| |d  |d  || krF|S q)Nr   zzipf(): a <= 1r   r<   g      )r  r   r   rG  r   r  )r]   Zam1r^   r  r  r  Tr   r   r   r     s   
(zipf_impl.<locals>._implr  r  r   r   r   	zipf_impl  s   rA  c                 C   r  )Nc                 S   r  r   )r   r   zipfr  r   r   r   r     r   zzipf_impl.<locals>.<lambda>c                 S   r  rH  )r   r   r  r   r   r   r   rB  r  r   r   r   r     r  r@  r   r  r   r   r   rA    r   c                    s^   t | tjs
td|dkrtjj n|dkrtj | jdkr' fdd}|S  fdd}|S )Nz1The argument to shuffle() should be a buffer typer   r   r<   c                    sT   | j d d }|dkr( |d }| | | | | |< | |< |d8 }|dksd S d S r;   rs  r   ijrandr   r   rw   +  s   zdo_shuffle_impl.<locals>.implc                    s`   | j d d }|dkr. |d }t| | t| | | |< | |< |d8 }|dksd S d S r;   )rt  r   copyrC  rF  r   r   rw   2  s   &)	rx   r   ZBufferr  r   r   rA  r*  ndim)r   rngrw   r   rF  r   do_shuffle_impl   s   

rK  c                 C   
   t | dS r   rK  r   r   r   r   shuffle_impl<     
rN  c                 C   rL  r|   rM  r   r   r   r   rN  A  rO  c                 C   s8   t | tjrdd }|S t | tjrdd }|S d }|S )Nc                 S   s   t | }t j| |S r   )r   aranger   shuffle)r   rU   r   r   r   permutation_implI  s   
z*permutation_impl.<locals>.permutation_implc                 S   s   |   }tj| |S r   )rH  r   r   rQ  )r   Zarr_copyr   r   r   rR  N  s   )rx   r   ry   Array)r   rR  r   r   r   rR  F  s   rR  c                  G   $   t | dkrdd }|S dd }|S )Nr   c                  W   r   r   r   r   r   r   r   	rand_impl^  rv  zrand.<locals>.rand_implc                  W   s   t j| S r   r   r   r   r   r   rU  c  r   len)r   rU  r   r   r   rG  Z  
   rG  c                  G   rT  )Nr   c                  W   r   r   r   r   r   r   r   
randn_implm  rv  zrandn.<locals>.randn_implc                  W   r  r   r   r   r   r   r   rY  r  r   rV  )r   rY  r   r   r   randni  rX  rZ  Tc                    s   t | tjr#| jdksJ | j tdd tdd }tdd n#t | tjr?tj tdd td	d }td
d nt	d| f |d tj
fv rWdfdd	}|S d fdd	}|S )Nr<   c                 S   s   t | S r   rV  ru   r   r   r   get_source_size  rP  zchoice.<locals>.get_source_sizec                 S   s   |   S r   )rH  ru   r   r   r   copy_source  rP  zchoice.<locals>.copy_sourcec                 S   s   | | S r   r   r]   Za_ir   r   r   getitem  rP  zchoice.<locals>.getitemc                 S   s   | S r   r   ru   r   r   r   r[       c                 S   s
   t | S r   )r   rP  ru   r   r   r   r\    rO  c                 S   r   r   r   r]  r   r   r   r^    r_  z@np.random.choice() first argument should be int or array, got %sTc                    s     | }t jd|}| |S )zs
            choice() implementation returning a single sample
            (note *replace* is ignored)
            r   r@  )r]   r   replacer  rD  )r[  r^  r   r   choice_impl  s   
zchoice.<locals>.choice_implc           	         s   | }|r(t | }|j}tt|D ]}t jd|}| |||< q|S t | }|j|kr7tdt j	| }|j}tt|D ]}|| ||< qF|S )zO
            choice() implementation returning an array of samples
            r   z@Cannot take a larger sample than population when 'replace=False')
r   r   r   r   rW  r   rA  r   r  permutation)	r]   r   r`  r  r   flrD  rE  Z
permuted_ar   r[  r^  r   r   ra    s    
NT)rx   r   rS  rI  r   r   ry   r   r  r  r   )r]   r   r`  r\  ra  r   rd  r   choice{  s2   



(rf  c                    s   t j tdd t| tjstd| f t|tjtjfs&td|f |d tj	fv r7d
 fdd	}|S t|tjrGd
 fdd	}|S t|tj
rWd
 fdd	}|S td	|f )Nc                 S   s   |j }|j}t|}td||D ]=}d}| }td|d D ]#}	||	 }
tj||
|  }|||	 < ||8 }|dkr< n||
8 }q|dkrM|||| d < qd S )Nr   r   r<   )r   r   rW  r   r   r   r  )r  pvalsr   rc  szplenrD  Zp_sumZn_experimentsrE  Zp_jZn_jr   r   r   multinomial_inner  s"   
z&multinomial.<locals>.multinomial_innerz7np.random.multinomial(): n should be an integer, got %szEnp.random.multinomial(): pvals should be an array or sequence, got %sc                    s    t t| }| || |S )z5
            multinomial(..., size=None)
            r   ZzerosrW  r  rg  r   r   r   rj  r   r   multinomial_impl  s   z%multinomial.<locals>.multinomial_implc                    s$   t |t|f }| || |S )z4
            multinomial(..., size=int)
            rk  rl  rm  r   r   rn    s   c                    s&   t |t|f  }| || |S )z6
            multinomial(..., size=tuple)
            rk  rl  rm  r   r   rn    s   zDnp.random.multinomial(): size should be int or tuple or None, got %sr   )r   r  r   rx   r   ry   r  SequencerS  r   Z	BaseTuple)r  rg  r   rn  r   rm  r   multinomial  s.   
rp  c                 C   r  )Nc                 S   s   t t| }t| | |S r   r   r   rW  dirichlet_arr)rm  r   r   r   r   dirichlet_impl&     
!dirichlet.<locals>.dirichlet_impl)rx   r   ro  rS  )rm  rs  r   r   r   	dirichlet#  r1  rv  c                 C   s   t | tjtjfstd| f |d tjfv rddd}|S t |tjr+ddd}|S t |tjr?t |jtjr?ddd}|S td| )NzCnp.random.dirichlet(): alpha should be an array or sequence, got %sc                 S   s   t t| }t| | |S r   rq  rm  r   r   r   r   r   rs  7  rt  ru  c                 S   s    t |t| f}t| | |S )z2
            dirichlet(..., size=int)
            rq  rw  r   r   r   rs  >  s   
c                 S   s"   t |t| f }t| | |S )z4
            dirichlet(..., size=tuple)
            rq  rw  r   r   r   rs  H  s   
zJnp.random.dirichlet(): size should be int or tuple of ints or None, got %sr   )	rx   r   ro  rS  r   r   ry   r   r   )rm  r   rs  r   r   r   rv  -  s,   


c           
      C   s   t | D ]
}|dkrtdqt| }|j}|j}td||D ]5}d}t| D ]\}}	tj	|	d||| < ||||  
 7 }q't| D ]\}}	|||   |  < qEqd S )Nr   zdirichlet: alpha must be > 0.0r<   )iterr  rW  r   r   r   	enumerater   r   rr  item)
rm  r   Za_valZa_lenr   r   rD  Znormr  r&  r   r   r   rr  Y  s    rr  c                 C   r  )Nc                 S      t | | t| |S r   #validate_noncentral_chisquare_inputnoncentral_chisquare_singler  noncr   r   r   noncentral_chisquare_implw     

7noncentral_chisquare.<locals>.noncentral_chisquare_implr   )r  r  r  r   r   r   noncentral_chisquares  r  r  c                 C   s\   |d t jfv rddd}|S t|t js!t|t jr(t|jt jr(ddd}|S td| )Nc                 S   r{  r   r|  )r  r  r   r   r   r   r    r  r  c                 S   s<   t | | t|}|j}t|jD ]	}t| |||< q|S r   )r}  r   r   r   r   r   r~  )r  r  r   r   r   rT   r   r   r   r    s   

zUnp.random.noncentral_chisquare(): size should be int or tuple of ints or None, got %sr   )r   r   rx   ry   r   r   r   )r  r  r   r  r   r   r   r  ~  s   

c                 C   sl   t |rt jS d| k r$t j| d }t j t | }|||  S t j|d }t j| d|  S )Nr<   r   r>   )r   isnannanr   r  r   r   r  )r  r  Zchi2r  rD  r   r   r   r~    s   
r~  c                 C   s$   | dkrt d|dk rt dd S )Nr   zdf <= 0znonc < 0r  r  r   r   r   r}    s
   r}  r   re  )__doc__r   r   numpyr   Zllvmliter   Znumba.core.cgutilsr   Znumba.core.extendingr   r   r   Znumba.core.imputilsr   r   r	   Znumba.core.typingr   Z
numba.corer   r   Znumba.npr   Znumba.core.errorsr   registrylowerr<  r   rm   r   r  rZ   r6  r   rM   ZLiteralStructType	ArrayTypeZrnd_state_tZPointerTyper   r+   r/   r1   r2   r8   r=   r?   rA   rE   rV   r_   rs   r~   r{   rz   r   Zrandom_samplesampleZranfr   r   r  normalvariater   r   r   r   r   r   r   r   r   r   r   getrandbitsr  r'  r*  r-  r1  r3  r=  rA  r?  rC  rE  rL  rN  rO  rV  rW  rR  r[  ri  r`  rd  rj  r  ro  r  rr  ru  rw  rk  r  r  betavariater  rn  r  r  r  expovariater  r  r  r  r  r  r  r  r  r  lognormvariater  r  paretovariater  r  r  weibullvariater  r  r  r  vonmisesvariater  r  r  r  r  r  r  r  r  r   r  r  r  r  r  r  r  r  r  r  r  r  r  r
  r  r  r  r  r  r  r  r  r  Znegative_binomialr  r  r  r&  r'  r,  r*  r.  r/  r0  r2  r4  r3  r5  r9  r8  r:  r=  r<  r>  rB  rA  rK  rQ  rN  rb  rR  rG  rZ  rf  rp  rv  rr  r  r~  r}  r   r   r   r   <module>   s.   



1























(
F


























	
;





	



































,



7

















































A





































V
P
	+


