o
    i                     @   s
  d dl Z d dlZd dlZd dlZd dlmZ d dlmZ d dl	m
Z
mZmZmZmZmZmZ d dlmZmZmZmZmZmZ d dlmZmZ d dlmZ dd	 Zd
d Zdd Zdd Z dd Z!dd Z"dd Z#e
e$ej%ej%dd Z&e
ej'ej%ej%e
ej(ej%ej%dd Z)e
ej*ej%ej%e
ej+ej%ej%dd Z,e
ej-ej%ej%e
ej.ej%ej%dd Z/dd Z0d d! Z1e
ej2ej%ej3e
ej4ej%ej3e
ej2ej5ej3e
ej4ej5ej3d"d# Z6d$d% Z7d&d' Z8d(d) Z9d*d+ Z:d,d- Z;d.d/ Z<d0d1 Z=d2d3 Z>d4d5 Z?d6d7 Z@d8d9 ZAd:d; ZBd<d= ZCd>d? ZDd@dA ZEdBdC ZFdDdE ZGdFdG ZHdHdI ZIdJdK ZJdLdM ZKdNdO ZLdPdQ ZMdRdS ZNdTdU ZOe
ejPejQejQe? e
ejRejQejQe@ e
ejSejQejQe; e
ejTejQejQe< e
ejUejQejQe= e
ejVejQejQe> e
ejWejQeN e
ejXejQeO dVdW ZYdXdY ZZeY  eZ  dZd[ Z[d\d] Z\d^d_ Z]d`da Z^dbdc Z_ddde Z`e
e$ej5ej5ddfdgZaddhdiZbddjdkZcdldm Zddndo Zedpdq Zfdrds Zgdtdu Zhdvdw Zidxdy Zjdzd{ Zkd|d} Zld~d Zmdd Znej5Zoe
ejpeoeoe[ e
ejqeoeoe[ e
ejreoeoe\ e
ejseoeoe\ e
ejteoeoe] e
ejueoeoe] e
ej'eoeoec e
ej(eoeoec e
ej*eoeoe^ e
ej+eoeoe^ e
ej-eoeoeb e
ej.eoeoeb e
ej2eoeoed e
ej4eoeoed e
e2eoeoed e
ejPeoeoei e
ejReoeoej e
ejSeoeoee e
ejTeoeoef e
ejUeoeoeg e
ejVeoeoeh e
eveoek e
ejWeoel e
ejXeoem [oeejwddd Zxeejwddd Zye
dejwdd Zzdd Z{dd Z|dd Z}ej5ej%fD ]Z~ee~de{ ee~de| e
de~e} qe
ej2ejwejwe
ej4ejwejwe
e2ejwejwdd Zdd Zdd Zdd ZedZdd Zdd Zdd Zdd Zdd Zdd ZejwZoe
ejpeoeoe e
ejqeoeoe e
ejreoeoe e
ejseoeoe e
ejteoeoe e
ejueoeoe e
ej*eoeoe e
ej+eoeoe e
ejWeoe e
ejXeoe e
ejPeoeoe e
ejReoeoe e
eveoe [oe
deje
dejdd Zdd Ze
eejdd Ze
eej%dd Ze
eej5dd Ze
eejwdd Zej%ej5ejwfD ]Zoe
ejeoe q&e
ejejQe eej3ej%eej3ej5eej3ejwdd Zeej%ej%dd Zeej%ejdd Zeej5ej5dd Zeej%ej5dd Zeej5ej%dd Zeej5ejweej%ejwdd Zeejwejwdd ZeejejddĄ ZeejejddƄ Zeej3ejeejejddȄ Zeejwddʄ Zeej%eej5eejdd̄ Zdd΄ Zeej5dσe eej%dσe dS )    N)ir)Constant)lower_builtinlower_getattrlower_getattr_generic
lower_castlower_constantimpl_ret_borrowedimpl_ret_untracked)typingtypesutilserrorscgutilsoptional)	intrinsicoverload_methodviewerc                 C   s   | j rdgS g S )z;
    Return the modifier flags for integer arithmetic.
    Znsw)signed)Zrettype r   d/var/www/html/eduruby.in/lip-sync/lip-sync-env/lib/python3.10/site-packages/numba/cpython/numbers.py_int_arith_flags   s   r   c                 C   \   |\}}|j \}}| ||||j}| ||||j}	|j||	t|jd}
t| ||j|
S N)flags)argscastreturn_typeaddr   r
   contextbuildersigr   vavbtatbabresr   r   r   int_add_impl#      
r+   c                 C   r   r   )r   r   r   subr   r
   r    r   r   r   int_sub_impl,   r,   r.   c                 C   r   r   )r   r   r   mulr   r
   r    r   r   r   int_mul_impl5   r,   r0   c              
   C   s  |j |j ksJ | d}| d}t||}t||}||d|| |j|d|| d}	|j||	dd |||}
|	||}|d|
|||}|d||}|||}||N\}}| ||
| ||| W d	   n1 sw   Y  | |||
|| ||||| W d	   n1 sw   Y  W d	   n1 sw   Y  W d	   n1 sw   Y  ||||fS )
a@  
    Reference Objects/intobject.c
    xdivy = x / y;
    xmody = (long)(x - (unsigned long)xdivy * y);
    /* If the signs of x and y differ, and the remainder is non-0,
     * C89 doesn't define whether xdivy is now the floor or the
     * ceiling of the infinitely precise quotient.  We want the floor,
     * and we have it iff the remainder's sign matches y's.
     */
    if (xmody && ((y ^ xmody) < 0) /* i.e. and signs differ */) {
        xmody += y;
        --xdivy;
        assert(xmody && ((y ^ xmody) >= 0));
    }
    *p_xdivy = xdivy;
    *p_xmody = xmody;
    r      ==TZlikely<!=N)typer   Zalloca_once_valueand_icmp_signedminvalif_thennot_ZsdivZsremxorif_elsestorer-   r   load)r!   r"   tyxyZEROONEZresdivZresmodZis_overflowZxdivyZxmodyZy_xor_xmody_ltzZxmody_istrueZcondZif_different_signsZif_same_signsr   r   r   int_divmod_signed>   s:   

rF   c                 C   s.   |j rt| ||||S ||||||fS )zD
    Integer divmod(x, y).  The caller must ensure that y != 0.
    )r   rF   ZudivZurem)r!   r"   rA   rB   rC   r   r   r   
int_divmodw   s   rG   c              	   C   sf  |\}}|j \}}|j}	t|	tjr|	j}	| ||||	}
| ||||	}tj||
j	dd}tj||
j	dd}|j
t||dde\}}| | j||fs\||| ||| W d    n1 sfw   Y  | t| ||	|
|\}}||| ||| W d    n1 sw   Y  W d    ||fS W d    ||fS 1 sw   Y  ||fS )NquotnameremFr4   )r   r   
isinstancer   ZUniTupledtyper   r   alloca_oncer7   r>   is_scalar_zeroerror_modelfp_zero_divisionr?   rG   )r!   r"   r#   r   Zzerodiv_messager$   r%   r&   r'   rA   r(   r)   rH   rK   if_zeroif_non_zeroqrr   r   r   _int_divmod_impl   s>   


rV   c                 C   s0   t | |||d\}}t|||||fS )Nzinteger divmod by zero)rV   r   
pack_arrayr@   r!   r"   r#   r   rH   rK   r   r   r   int_divmod_impl   s   
rY   c                 C   s   t | |||d\}}||S )Nzinteger division by zerorV   r@   rX   r   r   r   int_floordiv_impl      

r[   c                 C   s   |\}}|j \}}| ||||j}| ||||j}	t||	 | j|d W d    n1 s3w   Y  |||	}
t| ||j|
S )Nzdivision by zero)	r   r   r   r   rR   rP   rQ   fdivr
   r    r   r   r   int_truediv_impl   s   
r_   c                 C   s   t | |||d\}}||S )Nzinteger modulo by zerorZ   rX   r   r   r   int_rem_impl   r\   r`   c                 C   s&   t |tjr| jjsd|jd > S dS )Nr3   r1   F)rL   r   IntegerrP   Zraise_on_fp_zero_divisionbitwidth)r!   r   r   r   r   _get_power_zerodiv_return   s
   rc   c                    sR   t |jd tj |jt|  fdd}| ||||}t| ||j|S )z@
    a ^ b, where a is an integer or real, and b an integer
    r   c                    s   d}| } |dk r0d}| }|dk rt  r/| dkr%r!S td| dkr/| dkr/dS nd}|}|dkr@t| t|S |dkrX|d@ rL|| 9 }|dL }| | 9 } |dksD|r^d| S |S )	Nr1   r   T&0 cannot be raised to a negative powerr3   F         ?)OverflowErrorZeroDivisionErrormathpowfloat)r(   r)   rU   invertexp
is_integertpzerodiv_returnr   r   	int_power   s4   z!int_power_impl.<locals>.int_power)rL   r   r   ra   r   rc   compile_internalr
   )r!   r"   r#   r   rr   r*   r   rn   r   int_power_impl   s   
rt   c                    s  |j d j}t|tjstt|dkrt|dk }t|}|j}t|tj	t
| ||  |d |j d |}|j} fdd}	|d}
|}|dkrc|d@ rV|	|
|}
|dL }|	||}|dksM|rrnfdd}ndd }|  |t|||
f}
|
S )	zH
    a ^ b, where a is an integer or real, and b a constant integer
    r1   re   r   c                    s   r  | |S  | |S N)r/   fmul)r(   r)   )r"   ro   r   r   r/     s   zstatic_power_impl.<locals>.mulc                    s0   | dkr r S t d| dkr| dkrdS | S )Nr   rd   r1   r3   )rh   r(   )rq   r   r   invert_impl$  s   z&static_power_impl.<locals>.invert_implc                 S   s   d|  S )Nrf   r   rw   r   r   r   rx   1  s   )r   valuerL   numbersIntegralNotImplementedErrorabsr   r   ra   rc   r   r7   rs   r   	signature)r!   r"   r#   r   rm   rl   rp   valltyr/   r*   r(   rx   r   )r"   ro   rq   r   static_power_impl   s:   


r   c                 C   "   |j dg|R  }t| ||j|S Nr5   r9   r
   r   r!   r"   r#   r   r*   r   r   r   int_slt_impl:     r   c                 C   r   Nz<=r   r   r   r   r   int_sle_impl?  r   r   c                 C   r   N>r   r   r   r   r   int_sgt_implD  r   r   c                 C   r   Nz>=r   r   r   r   r   int_sge_implI  r   r   c                 C   r   r   icmp_unsignedr
   r   r   r   r   r   int_ult_implN  r   r   c                 C   r   r   r   r   r   r   r   int_ule_implS  r   r   c                 C   r   r   r   r   r   r   r   int_ugt_implX  r   r   c                 C   r   r   r   r   r   r   r   int_uge_impl]  r   r   c                 C   r   Nr2   r   r   r   r   r   int_eq_implb  r   r   c                 C   r   Nr6   r   r   r   r   r   int_ne_implg  r   r   c                        fdd}|S )Nc           
         s`   |\}}| d|t|jd}|  |t|jd}| ||}||||}	t| ||j|	S Nr5   r   r9   r   r7   r   selectr
   r   
r!   r"   r#   r   leftrightcmp_zerolt_zeroZge_zeror*   opr   r   implm  s   
z%int_signed_unsigned_cmp.<locals>.implr   r   r   r   r   r   int_signed_unsigned_cmpl  s   r   c                    r   )Nc           
         s`   |\}}| d|t|jd}|  t|jd|}| ||}||||}	t| ||j|	S r   r   r   r   r   r   r     s   z%int_unsigned_signed_cmp.<locals>.implr   r   r   r   r   int_unsigned_signed_cmp  s   r   c           	      C   sH   |\}t |jd }|d||}||}||||}t| ||j|S r   )r   r7   r9   negr   r
   r   )	r!   r"   r#   r   rB   rD   ZltzZnegatedr*   r   r   r   int_abs_impl  s   
r   c                 C      |\}t | ||j|S ru   r
   r   )r!   r"   r#   r   rB   r   r   r   uint_abs_impl     r   c           	      C   sR   |j \}}|\}}| ||||j}| ||||j}|||}t| ||j|S ru   )r   r   r   Zshlr
   	r!   r"   r#   r   ZvaltyZamttyr   amtr*   r   r   r   int_shl_impl     
r   c           	      C   sh   |j \}}|\}}| ||||j}| ||||j}|jjr&|||}n|||}t| ||j|S ru   )r   r   r   r   ZashrZlshrr
   r   r   r   r   int_shr_impl  s   
r   c                 C   R   |j \}}|\}}| ||||j}| ||||j}	|||	}
t| ||j|
S ru   )r   r   r   r8   r
   r!   r"   r#   r   atZbtavZbvZcavZcbcr*   r   r   r   int_and_impl  r   r   c                 C   r   ru   )r   r   r   or_r
   r   r   r   r   int_or_impl  r   r   c                 C   r   ru   )r   r   r   r=   r
   r   r   r   r   int_xor_impl  r   r   c                 C   s:   |j \}|\}||}| ||||j}t| ||j|S ru   )r   r   r   r   r
   r!   r"   r#   r   typr   r*   r   r   r   int_negate_impl  s
   
r   c                 C   0   |j \}|\}| ||||j}t| ||j|S ru   r   r   r   r
   r   r   r   r   int_positive_impl     r   c                 C   sR   |j \}|\}||t|jtd|jj d}| ||||j}t| ||j|S )N1   )	r   r=   r   r7   intwidthr   r   r
   r   r   r   r   int_invert_impl  s
   "r   c                 C   s  |\}t |jd}t |jd}t |jd}|d||}|d||}	t||j}
|d}|d}|d}|d	}|d
}|||| || |	||
 |
| W d   n1 sew   Y  || ||	|| W d   n1 sw   Y  || |	||
 |
| W d   n1 sw   Y  || |	||
 |
| W d   n1 sw   Y  || ||
}t| ||j|S )z
    np.sign(int)
    r1   r3   r   r2   r   z.zeroz.postestz.posz.negz.exitN)r   r7   r   r9   r   rN   append_basic_blockZcbranchZ
goto_blockr?   branchZposition_at_endr@   r
   r   )r!   r"   r#   r   rB   POSNEGrD   r   Zcmp_pospresultZbb_zeroZ
bb_postestZbb_posZbb_negZbb_exitr*   r   r   r   int_sign_impl  s>   






r   c                 C   s:   |j \}|\}| ||||j}||}t| ||j|S ru   )r   r   r   r   r
   r   r   r   r   bool_negate_impl  
   
r   c                 C   r   ru   r   r   r   r   r   bool_unary_positive_impl  r   r   c                  C   s  t j} ttj| | t ttj| | t ttj| | t ttj	| | t ttj
| | t ttj| | t ttj| | t ttj| | t ttj| | t ttj| | t ttj| | t ttj| | t ttj| t ttj| t ttj| | t ttj| | t tt| | t t jD ]J} ttj| | t  ttj!| | t" ttj#| | t$ ttj%| | t& ttjt j'| t ttjt j'| t ttt j'| t tt(| t) qttjt j*t j*t+ ttj#t j*t j*t+ ttj!t j*t j*t+ ttj%t j*t j*t+ t j,D ]K} ttj| | t+ ttj!| | t- ttj#| | t. ttj%| | t/ ttjt j'| t ttjt j'| t ttt j'| t tt(| t0 qd S ru   )1r   ra   r   operatorr   r+   iaddr-   r.   isubr/   r0   imuleqr   ner   lshiftr   ilshiftrshiftr   irshiftr   r   posr   rj   rt   ipowZunsigned_domainltr   ler   gtr   ger   Floatr}   r   IntegerLiteralr   Zsigned_domainr   r   r   r   rA   r   r   r   _implement_integer_operators&  sR   

r   c                  C   s   t jt jfD ]@} ttj| | t ttj| | t ttj| | t	 ttj
| | t	 ttj| | t ttj| | t ttj| t qd S ru   )r   Booleanra   r   r   r8   r   iandr   r   iorr=   r   ixorrl   r   r   r   r   r   _implement_bitwise_operatorsV  s   r   c                 C      |j | }t| ||j|S ru   )faddr
   r   r   r   r   r   real_add_implf     
r   c                 C   r   ru   )fsubr
   r   r   r   r   r   real_sub_implk  r   r   c                 C   r   ru   )rv   r
   r   r   r   r   r   real_mul_implp  r   r   c                 C   sX   t ||d  | j|d W d    n1 sw   Y  |j| }t| ||j|S )Nr1   r]   )r   rR   rP   rQ   r^   r
   r   r   r   r   r   real_div_implu  s
   
r   c                 C   s   |j |j ksJ |j }|j}| d|j g}t|||t|f}t|||}|jrQd|_	t
|d}	|j\}
}}t| |	|
|\}}|	|| |	| t||}|||||f}|||fS )Nz.numba.python.remZlinkonce_odrentry)r7   moduleZmanglerr   FunctionTypeZPointerTyper   get_or_insert_functionZis_declarationlinkageZ	IRBuilderr   r   real_divmod_func_bodyr?   retrN   callr@   )r!   r"   rB   rC   Zfloattyr   fnamefntyfnZ	fnbuilderZfxfypmoddivmodZquotientr   r   r   real_divmod|  s    
r   c              
   C   s  t ||j}t ||j}t ||j}|||}|||||}||| ||| |d}	|d}
|d}|d||	}|d||	}|d||	}|j	|ddk\}}|8 |
d||}|| ||||| ||||| W d    n1 sw   Y  W d    n1 sw   Y  | |||
|	}||| W d    n1 sw   Y  W d    n1 sw   Y  ~~||}|d||	}||M tjtjd}|t|j }| tjt||}|||g}|||}|||}t|jd	}|d
||}||||}||| W d    n	1 s3w   Y  t ||$ |||}||| |||||}||| W d    n	1 sfw   Y  ||||fS )N        g       rf   r6   r5   Tr4   )rk   doubleg      ?r   )r   rN   r7   fremr^   r   r?   fcmp_unorderedfcmp_orderedr>   r   r;   r   r   r@   r   Zfloat32Zfloat64strget_functionri   floorr   r~   r   Zifnotrv   )r!   r"   ZvxZwxr   ZpdivZ	pfloordivr   r   rD   ZNZEROrE   Z
mod_istrueZwx_ltzZmod_ltzZif_nonzero_modZif_zero_modZwx_ltz_ne_mod_ltzZ
div_istrueZrealtypemapZrealtypeZfloorfnfloordivZfloordivdiffZfloordivincrZHALFpredr   r   r   r     sl   .


	

r   c              	   C   s4  |\}}t j||jdd}t j||jdd}|jt ||ddc\}	}
|	( | j|d|sG|||}|||}|	|| |	|| W d    n1 sQw   Y  |
 t
| |||\}}|	|| |	|| W d    n1 sxw   Y  W d    n1 sw   Y  t |||||fS )NrH   rI   rK   Fr4   zmodulo by zero)r   rN   r7   r>   rO   rP   rQ   r^   r  r?   r   rW   r@   )r!   r"   r#   r   locrB   rC   rH   rK   rR   rS   rT   rU   r   r   r   real_divmod_impl  s2   	r  c              	   C   s   |\}}t ||j}|jt ||ddQ\}}	| | j|d|s0|||}
||
| W d    n1 s:w   Y  |	 t	| |||\}}
||
| W d    n1 s[w   Y  W d    n1 sjw   Y  t
| ||j||S )NFr4   r  )r   rN   r7   r>   rO   rP   rQ   r  r?   r   r
   r   r@   )r!   r"   r#   r   r  rB   rC   r*   rR   rS   rK   _r   r   r   real_mod_impl  *   
r  c              	   C   s   |\}}t ||j}|jt ||ddQ\}}	| | j|d|s0|||}
||
| W d    n1 s:w   Y  |	 t	| |||\}
}||
| W d    n1 s[w   Y  W d    n1 sjw   Y  t
| ||j||S )NFr4   r]   )r   rN   r7   r>   rO   rP   rQ   r^   r?   r   r
   r   r@   )r!   r"   r#   r   r  rB   rC   r*   rR   rS   rH   r  r   r   r   real_floordiv_impl+  r  r  c           
      C   s^   |\}}|j }| jr| tj|}|||}n|d|jg}	||	||f}t| ||j	|S )Nzllvm.pow)
r   Zimplement_powi_as_math_callr  ri   rj   Zdeclare_intrinsicr7   r   r
   r   )
r!   r"   r#   r   rB   rC   r   impr*   r   r   r   r   real_power_impl>  s   r  c                 C   r   r   r  r
   r   r   r   r   r   real_lt_implJ  r   r  c                 C   r   r   r  r   r   r   r   real_le_implO  r   r  c                 C   r   r   r  r   r   r   r   real_gt_implT  r   r  c                 C   r   r   r  r   r   r   r   real_ge_implY  r   r  c                 C   r   r   r  r   r   r   r   real_eq_impl^  r   r  c                 C   r   r   )r  r
   r   r   r   r   r   real_ne_implc  r   r  c                 C   s,   |j \}t||}| tj|}|||S ru   )r   r   r~   r  ri   fabs)r!   r"   r#   r   rA   r   r   r   r   real_abs_implh  s   
r  c                 C   s,   ddl m} |||d }t| ||j|S Nr   mathimpl)numba.cpythonr  negate_realr
   r   )r!   r"   r#   r   r  r*   r   r   r   real_negate_implo  s   r"  c                 C   r   ru   r   r   r   r   r   real_positive_implu  r   r#  c                 C   s~  |\}t |jd}t |jd}t |jd}t||j}|d||}	|d||}
||	{\}}| ||| W d   n1 sEw   Y  |O ||
:\}}| ||| W d   n1 shw   Y  | ||| W d   n1 sw   Y  W d   n1 sw   Y  W d   n1 sw   Y  W d   n1 sw   Y  ||}t| ||j	|S )z
    np.sign(float)
    r1   r3   r   r   r5   N)
r   r7   r   rN   r  r>   r?   r@   r
   r   )r!   r"   r#   r   rB   r   r   rD   r   Zis_posZis_negZgt_zeroZnot_gt_zeror   Znot_lt_zeror*   r   r   r   real_sign_impl|  s6   
r$  realc                 C   $   | j |||d}|j}t| |||S Nry   )make_complexr%  r
   r!   r"   r   ry   Zcplxr*   r   r   r   complex_real_impl     r+  imagc                 C   r&  r'  )r)  r-  r
   r*  r   r   r   complex_imag_impl  r,  r.  zcomplex.conjugatec                 C   sL   ddl m} | ||jd |d }|||j|_| }t| ||j|S r  )	r   r  r)  r   r!  r-  	_getvaluer
   r   )r!   r"   r#   r   r  zr*   r   r   r   complex_conjugate_impl  s
   r1  c                 C   s   t | |||S ru   )r
   )r!   r"   r   ry   r   r   r   real_real_impl  s   r2  c                 C   s   t |j}t| |||S ru   )r   Zget_null_valuer7   r
   )r!   r"   r   ry   r*   r   r   r   real_imag_impl  s   r3  c                 C   s   t | ||j|d S Nr   r   r!   r"   r#   r   r   r   r   real_conjugate_impl  s   r6  c              	   C   s  |\}}|j d }|j}| j|||d}| j|||d}	| ||}
|j}| }|	 }|
 }| |d}| |d}|d|	j|}|d|	j|}|	||}|
|m\}}|! t| ||||f}| j|||d}|j|
_|j|
_W d    n1 sw   Y  |. tjdtjdi| }tt |jgd }t|||}|||||f W d    n1 sw   Y  W d    n1 sw   Y  ||}t| ||j|S )Nr   r(  r   r2   Znumba_cpowfZ
numba_cpow   )r   underlying_floatZmake_helperr   Z_getpointerget_constantr  r%  r-  r8   r>   complex_mul_implr   Z	complex64Z
complex128r   r   ZVoidTyper7   r   r   r   r@   r
   r   )r!   r"   r#   r   cacbrA   ftyr(   r)   cr   paZpbZpcZTWOrD   Zb_real_is_twoZb_imag_is_zeroZb_is_twoZthenZ	otherwiser*   Zcres	func_namer   Zcpowr   r   r   complex_power_impl  sH   


rA  c                 C      |\}}|j d }| j|||d}| j|||d}| ||}	|j}
|j}|j}|j}||
||	_||||	_|	 }t| ||j|S Nr   r(  )r   r)  r%  r-  r   r/  r
   r   r!   r"   r#   r   cxcyrA   rB   rC   r0  r(   r)   r>  dr*   r   r   r   complex_add_impl     
rH  c                 C   rB  rC  )r   r)  r%  r-  r   r/  r
   r   rD  r   r   r   complex_sub_impl  rI  rJ  c                 C   s   |\}}|j d }| j|||d}| j|||d}| ||}	|j}
|j}|j}|j}||
|}|||}||
|}|||}||||	_||||	_|	 }t| ||j	|S )z'
    (a+bi)(c+di)=(ac-bd)+i(ad+bc)
    r   r(  )
r   r)  r%  r-  rv   r   r   r/  r
   r   )r!   r"   r#   r   rE  rF  rA   rB   rC   r0  r(   r)   r>  rG  acZbdadbcr*   r   r   r   r:  +  s"   
r:  nanc                 C   (   dd }|  ||||}t| ||j|S )Nc                 S   s   | j }| j}|j }|j}|s|stdt|t|kr>|s#tttS || }|||  }t|||  | |||  | S |sEtttS || }|| | }t| j | | j | | j| | j  | S )Nzcomplex division by zero)r%  r-  rh   r}   complexNAN)r(   r)   ZarealZaimagZbrealZbimagratiodenomr   r   r   complex_divE  s.   

z%complex_div_impl.<locals>.complex_divrs   r
   r   )r!   r"   r#   r   rT  r*   r   r   r   complex_div_implD  s   rV  c           	      C   sn   ddl m} |j\}|\}| j|||d}| ||}|||j|_|||j|_| }t| ||j	|S )Nr   r  r(  )
r   r  r   r)  r!  r%  r-  r/  r
   r   )	r!   r"   r#   r   r  r   r   cmplxr*   r   r   r   complex_negate_impld  s   rX  c                 C   r   ru   r   r!   r"   r#   r   r   r   r   r   complex_positive_implp  r   rZ  c                 C   r   |\}}|j d }| j|||d}| j|||d}|d|j|j}	|d|j|j}
||	|
}t| ||j|S )Nr   r(  r2   )r   r)  r  r%  r-  r8   r
   r   )r!   r"   r#   r   rE  rF  r   rB   rC   Zreals_are_eqZimags_are_eqr*   r   r   r   complex_eq_implu     
r\  c                 C   r[  )Nr   r(  r6   )r   r)  r  r%  r-  r   r
   r   )r!   r"   r#   r   rE  rF  r   rB   rC   Zreals_are_neZimags_are_ner*   r   r   r   complex_ne_impl  r]  r^  c                 C   rO  )z)
    abs(z) := hypot(z.real, z.imag)
    c                 S   s   t | j| jS ru   )ri   hypotr%  r-  )r0  r   r   r   complex_abs  s   z%complex_abs_impl.<locals>.complex_absrU  )r!   r"   r#   r   r`  r*   r   r   r   complex_abs_impl  s   ra  znumber.itemc                 C   s   |d S )z;
    The no-op .item() method on booleans and numbers.
    r   r   r5  r   r   r   number_item_impl  s   rb  c                 C   s:   |j \}|\}| ||||j}||}t| ||j|S ru   )r   r   r   r<   r
   )r!   r"   r#   r   r   r   Zistruer*   r   r   r   number_not_impl  r   rc  c                 C   s
   |\}|S ru   r   rY  r   r   r   bool_as_bool  s   rd  c                 C      |\}| d|t|jdS )Nr6   r   )r   r   r7   rY  r   r   r   int_as_bool     rf  c                 C   re  )Nr6   r  )r  r   r7   rY  r   r   r   float_as_bool  rg  rh  c                 C   s^   |j \}|\}| |||}|j|j}}t|jd}	|d||	}
|d||	}||
|S )Nr  r6   )r   r)  r%  r-  r   r7   r  r   )r!   r"   r#   r   r   r   rW  r%  r-  zeroZreal_istrueZimag_istruer   r   r   complex_as_bool  s   rj  c                 C   s$   |  ||j|j}| |||j|S ru   )get_constant_genericliteral_typeliteral_valuer   r!   r"   fromtytotyr   Zlitr   r   r   literal_int_to_number  s   rq  c                 C   sX   |j |j kr|S |j |j k r||| |S |jr#||| |S ||| |S ru   )rb   truncget_value_typer   Zsextzextr!   r"   ro  rp  r   r   r   r   integer_to_integer  s   rv  c                 C   s   | || |S ru   )Zinttoptrrs  ru  r   r   r   integer_to_voidptr  s   rw  c                 C   s.   |  |}|j|jk r|||S |||S ru   )rs  rb   ZfpextZfptruncr!   r"   ro  rp  r   r   r   r   r   float_to_float  s   
ry  c                 C   s(   |  |}|jr|||S |||S ru   )rs  r   ZsitofpZuitofprx  r   r   r   integer_to_float     
rz  c                 C   s(   |  |}|jr|||S |||S ru   )rs  r   ZfptosiZfptouirx  r   r   r   float_to_integer  r{  r|  c                 C   s@   |  ||||j}| |jd}| ||}||_||_| S r4  )r   r8  r9  r)  r%  r-  r/  )r!   r"   ro  rp  r   r%  r-  rW  r   r   r   non_complex_to_complex  s   r}  c           	      C   sX   |j }|j }| j|||d}| ||}| ||j|||_| ||j|||_| S r'  )r8  r)  r   r%  r-  r/  )	r!   r"   ro  rp  r   ZsrctyZdsttysrcdstr   r   r   complex_to_complex*  s   r  c                 C   s   |  |||S ru   )is_trueru  r   r   r   any_to_boolean5  s   r  c                 C   s$   | |td}| ||tj|S )N    )rt  r   ZIntTyper   r   Zint32)r!   r"   ro  rp  r   Zasintr   r   r   boolean_to_any9  s   r  c                 C   s"   |  ||j|j}| ||j|S ru   )rk  rl  rm  r  rn  r   r   r   literal_int_to_boolean?  s   r  c                 C   s4   |j }| |||j}| |||j}t||fS ru   )r8  rk  r%  r-  r   Zliteral_struct)r!   r"   rA   pyvalr=  r%  r-  r   r   r   constant_complexL  s   r  c                 C   s&   t |tjr
t|}| |}||S ru   )rL   npZbool_boolrs  )r!   r"   rA   r  r   r   r   r   constant_integerS  s   
r  c                 C   sL   t | tjtjfr"t |tjjr$| j|jjkrt	ddd }|S dS dS )z) Typing for the np scalar 'view' method. zOChanging the dtype of a 0d array is only supported if the itemsize is unchangedc                 S   s
   t | |S ru   r   )scalarviewtyr   r   r   r   m  s   
zscalar_view.<locals>.implN)
rL   r   r   ra   ZabstractZ	DTypeSpecrb   rM   r   ZTypingError)r  r  r   r   r   r   scalar_viewd  s   r  viewru   )ri   rz   numpyr  r   Zllvmliter   Zllvmlite.irr   Znumba.core.imputilsr   r   r   r   r   r	   r
   Z
numba.corer   r   r   r   r   r   Znumba.core.extendingr   r   Znumba.cpython.unsafe.numbersr   r   r+   r.   r0   rF   rG   rV   divmodra   rY   r	  	ifloordivr[   truedivitruedivr_   r   imodr`   rc   rt   rj   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   booleanr   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r  r  r  r  r  r  r  r  r  r  r  r"  r#  r$  rA   r   r   r-   r   r/   r   r}   Complexr+  r.  r1  r2  r3  r6  clsrA  rH  rJ  r:  rk   rQ  rV  rX  rZ  r\  r^  ra  r   Numberrb  rc  r  rd  rf  rh  rj  r<   rq  rv  Zvoidptrrw  ry  rz  r|  r}  r  Anyr  r  ZBooleanLiteralr  r  r  r  r   r   r   r   <module>   s   $ 			9

	+=							*0l







) 










		




	




